放射能測定法シリーズ(No. 33) DR-SITU

ゲルマニウム半導体検出器を用いた in-situ 測定法

平成29年3月改訂

原子力規制庁監視情報課

第	章	序 論	1
第2	2章	用語の解説 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
第3	3章	測定機器	4
	3.1	機器に必要な要件	4
	3.2	機器構成	4
	3.3	機器仕様の例 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
	3.4	機器校正	7
	3.5	機器の汚染対策 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
	3.6	その他の準備 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
第4	1章	測定方法とスペクトル解析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
	4.1	測定場所の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
	4.2	測定	15
	4.3	記録	17
	4.4	スペクトル解析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
第5	5章	放射能濃度及び空間放射線量率の算出	21
	5.1	解析の条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
	5.2	放射能濃度の算出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
	5.3	空間放射線量率の算出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32
第(5章	測定結果の解釈 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
	6.1	解析条件と実際の測定条件が異なった場合の影響	36
	6.2	測定結果の精度管理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	38
解	説		
角	解説 A	シミュレーション計算によるピーク効率の算出 ・・・・・・・・・・・・・	41
角	解説 B	in-situ 測定可能範囲と測定時間 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	45
角	解説 C	in-situ 測定スペクトル例 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	52
角	解説 D	原子力災害時におけるエネルギー校正 ・・・・・・・・・・・・・・・・・・・・・	56
角	解説 E	放射性物質の土壤中における鉛直分布	58
角	解説 F	解析条件と実際の測定条件が異なった場合の影響	76
角	解説 G	検出器の方向特性(ピーク効率の角度依存性)	87
角	解説 H	実際の測定例 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	89
角	Ϋ́́βἰ Ι	相互比較測定	97

付 録

付録1	放射性核種濃度と地上高1 m でのγ線フルエンス率との関係 ・・・・・・・・	103
付録 2	線量率と地上高1 m でのγ線フルエンス率との関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	115
付録3	放射性核種濃度と地上高1mでの線量率との関係 ・・・・・・・・・・・	137
付録4	参考文献	149

第1章 序 論

原子力施設における事故等の発生時(以下「原子力災害時」という。)等、放射性物質が環 境中に放出された場合、優れたエネルギー分解能をもつゲルマニウム(以下「Ge」という。) 半導体検出器を用いて、in-situ測定^{*1}を行うことによって、地表に沈着した放射性物質の特 定、放射能濃度及び沈着物に起因する空間放射線量率を求めることができる。

in-situ 測定法は、実際の地表面全体を対象として測定を行うため、土壌を採取して実験 室に持ち帰り測定する方法と比較して測定時間は十分の一程度でよい。また、風雨等の影響 によって地表面に沈着した放射性物質が均質に分布していない場合に、土壌を採取して代表 的な値を得るのは困難であるが、in-situ 測定法によれば測定地点周辺の平均的な測定結果 を得ることができる。したがって、放射性物質が環境中に放出され広い範囲に沈着し、その 沈着の分布図を作成する場合、特に有効な測定法であり、平成23年3月の東日本大震災に伴 い発生した東京電力福島第一原子力発電所事故(以下「福島第一原発事故」という。)後にお いても放射性物質の沈着の分布を把握するために活用されてきた*2。また、放射性物質を特定 できるため、放出状況を推測することができ、さらに、特定した放射性物質のそれぞれの半 減期から、測定後の空間放射線量率の変化を予測し正確な線量評価に資することができる。

本測定法は、in-situ 測定のための Ge 半導体検出器の校正方法、地表に沈着した放射性物 質からの y 線の測定及び解析方法を記載した。また、福島第一原発事故後の観測例から、原 子力災害後の in-situ 測定における平常時とは異なる注意点についても記載した。

解析方法については、HASL^{*3}の方法(H. L. Beck, et al.; HASL-258(1972)) に準拠し、ICRU^{*4} Rep. 53(1994)等の研究結果も参考にした。HASLの方法では、放射性物質の土壌中における鉛 直分布、周囲の地形及び検出器設置高さ等について、ある仮定の下に解析を行うため、仮定 と実際の条件が異なった場合の解析結果への影響を把握しておく必要がある。本測定法では、 それらの影響を明確にするとともに、補正方法等も記載した。

検出可能レベルは、1時間の測定で、地表に沈着した放射性核種に対して、0.03 kBq/m²程度、それらの核種からの空間放射線量率として 0.1 nGy/h 程度である(解説 B 参照)。

また、in-situ 測定法は、元々自然に存在する放射性物質であるウラン系列核種、トリウム系列核種、カリウム 40 等についても、土壌中の放射能濃度及び空間放射線量率を求めることが可能であることから、その方法についても記載した。

^{*1}「in-situ」とは「現場」を示す。なお、本測定法では「Ge 半導体検出器を用いた in-situ 測 定」を「in-situ 測定」という。

^{*2 「}平成 26 年度放射性物質測定調査委託費(東京電力株式会社福島第一原子力発電所事故に伴う 放射性物質の分布データの集約及び移行モデルの開発)事業 成果報告書 放射性セシウム沈着 量の面的調査」 三上智、斎藤公明(2015)

^{*&}lt;sup>3</sup> Health and Safety Laboratory の略称。その後、EML(Environmental Measurements Laboratory) を経て、現在は NUSTL(National Urban Security Technology Laboratory)。

 $^{^{*4}}$ International Commission on Radiation Units and Measurementsの略称。

第2章 用語の解説

in-situ 測定に特有な用語を中心に、以下に解説を記載する。Ge 半導体検出器の基本的な 用語については、放射能測定法シリーズ No.7「ゲルマニウム半導体検出器によるガンマ線ス ペクトロメトリー」を参照のこと。

in-situ 測定

現場での測定。in-situはラテン語で現場を示す。

レスポンス

指示値と測定すべき量との比を示す。校正定数の逆数。

角度依存性

Ge 半導体検出器の結晶に入射する y 線に対するレスポンスが、入射角度に依存する性質。

沈着量

単位面積当たりの土壤に沈着、浸透した放射性物質の量のこと(Bq/cm²)。

重量深度

単位面積当たりの土壌の重量で表される地表面からの深度 (g/cm²)。

β

重量緩衝深度(g/cm²)。放射性物質の土壌中における鉛直分布を表すパラメータで、放射 能濃度が地表の37%(=1/e)になる重量深度のこと。浸透の程度を表し、数値が大きい程深 く浸透していることを示す。

スクレーパープレート

土壌を表層から鉛直方向に任意の間隔で削り取って採取する器具であり、地面に固定する 金属フレームと、フレーム内の土壌を削り取りながら採取する金属プレートから構成され る。金属プレートに任意の深さで金属棒を固定することによって、採取する深さを調節す ることができる。

無限平面

遮へい物のない無限に開かれた平たんな地面。

鉛直分布

土壌中の放射性物質の深さ方向の分布。

地表面分布

放射性物質が地表面に分布している状態。

指数分布

土壌中の放射性物質が鉛直方向に指数関数的に減少して分布している状態。

均質分布

放射性物質が土壌中に均一に分布している状態。

HASL

Health and Safety Laboratoryの略称。その後、EML(Environmental Measurements Laboratory)を経て、現在は NUSTL(National Urban Security Technology Laboratory)。

ICRU

International Commission on Radiation Units and Measurements (国際放射線単位測定 委員会)の略称。 3.1 機器に必要な要件

in-situ 測定に用いられる Ge 半導体検出器は、実験室で環境試料の測定に用いられる通 常の γ線スペクトロメータと基本的には同じである。検出器及び各機器の詳細については、 放射能測定法シリーズ No. 7「ゲルマニウム半導体検出器によるガンマ線スペクトロメトリ ー」及び IEC*1 規格を参照のこと。

ただし、屋外の測定に対応するため、通常のスペクトロメータとしての性能に加え、以 下の要件が必要となる。

- ① 機器の運搬及び設置が容易に行えること。
- ② 屋外の気象条件下において安定して動作すること*2。
- ③バッテリー駆動が可能なこと。
- ④ デュワー瓶は操作性を確保するとともに検出器に対して過度な遮へい体とならぬよう、
 大きさを最小限に抑え、できるだけ軽く、頑丈な構造であること。

3.2 機器構成

液体窒素冷却方式の機器構成例を図 3.1 に、電気冷却方式の機器構成例を図 3.2 に示す。

- ① Ge 半導体検出器
- ② ポータブルデュワー瓶(液体窒素冷却方式のみ)
- ③ マルチチャンネルアナライザ (MCA)
- ④ 検出器支持架台
- ⑤ パーソナルコンピュータ (PC) (MCA 制御及びデータ解析用)
- ⑥ ソフトウェア
- ⑦ その他附属品等

電気冷却方式では、検出部・冷却部・MCA・制御部等が一体型のポータブルタイプも市販されている。

3.3 機器仕様の例

in-situ 測定で使用する機器仕様の例を以下に示す。なお、ここで示した仕様は代表例で あり、それ以外の機器を使用することを除外するものではない。

- ① Ge 半導体検出器
 - 同軸型高純度 Ge 半導体検出器*3

^{*1} International Electrotechnical Commissionの略称。

^{*2} 特に炎天下において直射日光を避けるための対策は、測定機器を安定動作させるために不可欠 である。

^{*3} Ge 結晶の直径と長さが同程度である検出器が望ましい(ピーク効率のy線入射角度依存性が小さいため)。低エネルギーのy線/X線を測定対象とする場合にはn型検出器を用いるが、ベリリウム製等の入射窓をもつものは破損し易く、屋外での使用には適さないことから、アルミニウム製エンドキャップの方がよい。

- 25 cm 相対効率 25 %程度*4
- ・ エネルギー分解能 コバルト 60 1333 keV に対して 半値幅 (FWHM) 2.3 keV 以下*5
- ピークコンプトン比 30 ~ 60:1^{*6}
- 測定対象エネルギー範囲 50 keV~2000 keV^{*7 *8}
- バッテリー駆動時間(電気冷却方式のみ) 連続運転で最大8時間程度
- ・ 結晶の冷却に要する時間 4時間以上*9
- 検出器を下向きに設置可能であること。*10
- ② ポータブルデュワー瓶(液体窒素冷却方式のみ)
 - ・ デュワー容量 最大7L程度*11
- ③ マルチチャンネルアナライザ (MCA) *12
 - ・ 高圧電源及びアンプ内蔵
 - アンプゲイン 2~2000 程度*13
 - HV $\pm 10 \sim 5000$ V
 - 検出器保護回路

検出器の温度が上昇した場合に自動的に高電圧を遮断する機能をもつこと。

- スペクトルメモリ 4 kch ~ 8 kch^{*14}
- · 積分非直線性 0.025 %以下
- · 微分非直線性 1%以下
- バッテリーで駆動可能であること(ポータブルタイプ)。
- 本体にディスプレイを持たず、接続した PC でスペクトルの表示及び測定制御を行う タイプの場合、PC の電源を切った状態でも測定が継続できること。
- ④ 検出器支持架台
 - ・ 検出器及びデュワー瓶を地表面上1mに下向きに安定した状態で保持できること。
- *4 電気冷却式では、10~20 %程度の相対効率の検出器が市販されている。空間放射線量率の高い 地点における測定では、相対効率の低い検出器の方が、信号処理が飽和せず測定に有利な場合が ある。
- *5 電気冷却式の Ge 半導体検出器は液体窒素方式と比較して、機械的なノイズの影響によって、半 値幅が大きくなる傾向がある。
- *6 ピークコンプトン比は遮へい体内で測定したスペクトルから算出しているため、in-situ 測定の場合、上記ピークコンプトン比は目安である。
- ^{*7} 低エネルギーX線/γ線を測定対象とする場合は、30 keV~2000 keV程度とする。
- *⁸ 自然に存在する放射性核種の 2000 keV 以上のγ線 (タリウム 208、2615 keV) 等を対象とする 場合は、測定エネルギー範囲の上限を 4000 keV とする。
- *
 ⁹ 結晶の大きさ及び冷凍機の冷却性能に依存するので、上記冷却時間は目安である。
- *10 検出器をどのような方向に向けても液体窒素の漏れが生じないこと。
- *11 操作性及びデュワー瓶による遮へいの影響を考慮する必要があり、一般的には 3~5 L 程度で ある。
- *12 電気冷却方式では検出器本体に内蔵されている機器もある。
- *13 スペクトルメモリの範囲で2000 keV 若しくは4000 keV に調整できるアンプゲインであること。
- *¹⁴ チャネルとエネルギーの対応関係は通常 0.5 keV/ch とし、測定対象のエネルギー範囲に応じ て使用するチャネル数を選択する。(2000 keV : 4 kch、4000 keV : 8 kch)
- 自然に存在する核種の 2000 keV 以上のエネルギーのγ線 (タリウム 208、2615 keV) 等を対 象とする場合は、8 kchを使用する。

- ・ 検出器と地面との間に遮へい物となるものが少ない構造であること。
- ⑤ パーソナルコンピュータ (PC) (MCA 制御及びデータ解析用)*15
 - ・ MCA と接続し、測定の制御ができること。
 - ・ バッテリー駆動が可能であること。
 - ・ 屋外の明るさでも判読が可能なディスプレイを備えていること。*16
- ⑥ ソフトウェア
 - ・ MCA 制御ソフトウェア
 - 解析ソフトウェア

HASL-258 及び ICRU Rep. 53 方式に準拠していること。(詳細は第5章に示した。) ⑦ その他の附属品等

- ・ 検出器、MCA、PCの運搬用ケース
- ・ ケーブル類(MCA-検出器、MCA-PC 接続ケーブル、電源ケーブル等)
- DC-AC変換器 (DC 24 Vまたは12 V → AC 100 V) (必要に応じて)
- ・ 検出器、MCA、PC 用予備バッテリー
- ・ 液体窒素補充用デュワー瓶(容量:20~30 L程度)(液体窒素冷却方式のみ)
- ・ その他液体窒素補給に必要な器具一式(液体窒素冷却方式のみ)
- 校正用 y 線源
- ・ γ線源セット用治具
- 汚染防止用器具(ビニール袋等)

*15 屋外で使用するため、防水性能を備えた PC が望ましい。

*¹⁶ PC の液晶ディスプレイは明るい屋外での視認性が悪いため、簡易的な遮光フードのようなもの を用意しておくとよい。

3.4 機器校正

in-situ 測定では Ge 半導体検出器を地表面から 1 m の位置に下向きに設置して測定を行う。この場合、地表に沈着した放射性物質からの直達 γ 線は、検出器の中心軸方向を 0° とした場合 0°~90°の方向から検出器に入射する。そのため、検出器のピーク効率の γ 線入射角度依存性を考慮する必要がある。角度依存性の校正方法の詳細は第5章を参照の こと。本章では、角度依存性の校正の際に必要となる、検出器のピーク効率及びその角度 依存性についての校正の手順について示す。 3.4.1 エネルギー校正

適当なγ線源を測定し、γ線による全吸収ピークが目的のチャネルに来るようにアンプ のゲイン及びアナログデジタルコンバータ (ADC)のゼロレベルを調整する (コバルト 57、 コバルト 60 等を用いるとよい)。

ソフトウェア上でγ線エネルギーとチャネルの関係を関数化し、得られた校正式をファ イルに保存しておく。^{*17}

3.4.2 ピーク効率校正

定期的に標準点線源等によるピーク効率校正^{*18}を行い、効率曲線を求めることが望ましい。また、分解能を求め、両者が経時的に大きく変化がないか確認しておくとよい。

3.4.2.1 標準点線源による校正

- 3.4.2.1.1 必要な機器
- ① Ge 半導体検出器及び測定回路一式
- ② 標準点線源

測定対象とするγ線エネルギー範囲をカバーするように核種を選択する。

校正用に用いられる核種とγ線エネルギーの例を表 3.1 に示す。

線源強度は数百 kBq 程度のものを使用する。このレベルの線源は表示付認証機器として、簡易的な届出で使用を開始することができる。使用に当たっては、使用の開始の 日から 30 日以内に、「表示付認証機器使用届」を原子力規制委員会に届け出る必要が ある。

「表示付認証機器使用届」は線源購入時に購入先から入手するか、又は原子力規制委員会のウェブサイトからダウンロードすることができる。

(http://www.nsr.go.jp/activity/ri_kisei/shinsei/shinsei1-1.html)

^{*17} ほとんどの MCA では、事前にエネルギー校正を行った結果を保存しておくことによって、スペクトルの横軸を y 線エネルギーで表示できる。

^{*18} シミュレーション計算によってピーク効率を算出することも可能である(解説 A 参照)。

核種	γ線エネルギー (keV)	放出比	半減期
$^{241}\mathrm{Am}$	59.5	0.359	432.6 年
¹³³ Ba	81.0	0.355^{*}	10.55年
⁵⁷ Co	122. 1	0.856	271.7 日
¹³⁹ Ce	165.9	0.799	137.6 日
¹³³ Ba	356.0	0.621	10.55年
¹³⁷ Cs	661.7	0.851	30.08年
⁵⁴ Mn	834.8	1.000	312.2 日
⁸⁸ Y	898.0	0.937	106.6 日
⁶⁰ Co	1173.2	0.999	5.27年
²² Na	1274.5	0.999	2.60年
⁶⁰ Co	1332.5	1.000	5.27年
⁸⁸ Y	1836.1	0.992	106.6 日

表 3.1 校正に用いられる核種とγ線エネルギーの例

*¹³³Baの79.6 keV(放出比:0.026)のピークが重なるため、それを合算した放出比を記載 (ENSDF(Evaluated Nuclear Structure Data File)(2016年3月)から引用) ③ 検出器、線源固定用治具

Ge 半導体検出器と線源との距離を一定(1m以上)に保ち、かつ、線源と検出器を結 ぶ線と検出器中心軸とがなす角度を変えられること(10°~15°刻みで設定できるこ と)。

測定に用いられる治具の例を図3.3に示す。

線源の設置に当たっては、線源自体による遮へいが生じないよう線源の向きに注意する。また、治具の回転中心と検出器の中心を合わせる。

図 3.3 治具の例

角度依存性の補正を行うため、検出器のピーク効率の角度依存性 N(θ)/N₀^{*19}を実測 によって求める。ピーク効率の角度依存性はγ線エネルギーに依存するため、複数のエ ネルギーについて実測する必要がある。

- 3.4.2.1.2 測定手順*20
- (1) 点線源を治具に固定し、ピークの正味計数が 10000 カウント程度になるまで測定を 行う(複数の線源を同時にセットして測定してもよい)。
- (2)角度を変えて同様の測定をくり返す(角度は0°~90°の範囲とする)。
- (3) それぞれの測定結果について目的核種の正味ピーク計数率(s⁻¹)を求める。
- (4) 用いた標準線源の1秒当たりのγ線放出数及び線源と検出器の距離から、検出器位 置におけるγ線のフルエンス率(cm⁻² s⁻¹)を求める(5.2.1(1)参照)。
- (5) (3)の正味ピーク計数率を(4)のフルエンス率で除し、単位フルエンス率当たりのピ ーク効率を求める。
- (6) γ 線のエネルギーごとに、ピーク効率を角度 θ の関数で表す($\theta = 0^{\circ}$ の値を1.0として規格化した後、最小二乗法によって関数化する)。
- (7)得られた関数式を用い、第5章式(5.6)を用いて角度依存性補正項N_f/N₀をγ線エネ ルギーごとに計算する。

3.4.2.1.3 角度依存性

Ge 結晶の長さ(L) と直径(D)の比が1に近い検出器の場合、低エネルギー領域以外 (>200 keV)におけるピーク効率の角度依存性は小さく、角度依存性の補正項は1に近 くなる(図3.4、図3.5参照)。

L/D 比が 0.9~1.1 の範囲内の検出器を使用し、200 keV 以下の低エネルギー γ 線/X 線を測定対象としない場合には、角度依存性補正項 N_f/N_0 はほぼ 0.9~1.1 の範囲内に収 まる。このような場合は角度依存性の校正を必ずしも行う必要はなく、90° 方向からの 照射だけで校正することもできる。

^{*&}lt;sup>19</sup> 第5章 式(5.6)参照

^{*20 (3)~(7)}の手順は、機器メーカーのソフトウェアを用いて自動的に計算することができる。

図 3.4 γ線エネルギーと角度依存性 補正項 (N_f/N₀)との関係 (ICRU Rep. 53 から引用)

図3.5 Ge半導体検出器の長さと 直径の比(L/D)と角度依存 性補正項(N_f/N₀)の関係 (HASL-300から引用)

3.5 機器の汚染対策

3.5.1 汚染防止策

in-situ 測定する際に機器が汚染してしまっていては信頼性のある測定結果が得られない 可能性がある。放射性物質で汚染している場所、又は汚染しているかどうかわからない場所 で測定を実施する場合には、事前に汚染防止策を実施しておく必要がある。汚染防止策とし て、機器をビニール等で養生することが有効である(図3.6参照)。また、機器運搬時の汚染 防止策として、測定に支障がない範囲でビニールを二重にする、又は検出器用カバーを用い る等、運搬時の汚染を防止するための養生を実施するとよい。運搬車内の養生及び車内に汚 染をもち込まないために頻繁にビニール等を交換することも重要である。

図 3.6 機器の養生例

(1) 検出器の養生

大型ビニール袋を検出器形状に合うようにカットし、必要に応じてシーラー等で封を行い、 検出器本体が汚染しないように養生を実施する(図3.7参照)。注意点としては、持ち運びの 際のハンドリング、ケーブル類の接続、液体窒素注入口の確保(液体窒素冷却方式のみ)等 がある。また、検出器本体に吸排気口がある場合には、埃等が内部に入らないようにフィル ター等を取り付けるとよい。

夏季の炎天下での in-situ 測定では、直射日光によってビニール袋内の温度が上昇し、検 出器本体に影響を及ぼす可能性があるため、日除け等を必要に応じて用いるとよい。

(液体窒素冷却方式)

(電気冷却方式)

図 3.7 検出器の養生例

(2) MCA 等の養生(検出器本体に MCA を内蔵している場合を除く。)

MCA 及び PC の本体より大きめのビニール袋を使用し、必要に応じてシーラー等で封を行い、 本体が汚染しないように養生を実施する。MCA には検出器と接続するケーブル、電源ケーブ ル及び制御用 PC と接続するケーブルがあるため、これらを接続するために養生を考慮する必 要がある。MCA は使用中に発熱する機器であるため、完全密閉をせずに必要に応じて通気で きるようにする。また、検出器と同様に日除け等を必要に応じて用いるとよい。

(3) ケーブルの養生

ケーブルの養生には、細長い筒状のビニール袋を使用するとよい。ケーブルは養生を実施 する機器の中で取扱い上最もダメージを受けやすいので、擦り切れて穴が開いたりしないよ うにビニールを二重にする等の対策を実施するとよい。また、コネクター部分に荷重がかか らないように養生を実施する。

(4) 検出器支持架台の養生

検出器支持架台の脚の養生には、ケーブルと同様に細長い筒状のビニール袋を使用すると よい。検出器支持架台の脚は in-situ 測定時に常に地面に接する部分であるため、擦り切れ て穴が開いたりしないようにビニールを二重にしたり、厚手のビニール袋を使用する等の対 策を実施する。

3.5.2 除染法

in-situ測定等において機器が汚染してしまった場合には、必要に応じて除染を実施する。 汚染箇所を特定できる場合には、その箇所を拭き取る。拭き取りで除染の効果が見られない 場合には、汚染箇所の部品を交換する等の対応を検討する。

機器が汚染してしまったことを確認するために、定期的に同一条件でバックグラウンド測 定を実施し、バックグラウンドレベルを把握しておくとよい。

3.6 その他の準備

- ・検出器は冷却に必要な時間と測定開始予定時間を考慮して、事前に冷却しておくこと。Ge
 結晶の劣化を防ぐため、運用上可能であれば常時冷却しておくことが望ましい。長期間常
 温で保管している場合には、定期的に効率に変化がないことを確認する必要がある。
- ・バッテリーを充電しておくこと(検出器、ポータブル MCA、PC)。夏季の炎天下や冬季における測定では、バッテリー駆動時間が大きく短縮される場合があるので、予備のバッテリーを準備することで現場での測定可能時間を延ばすことができる。
- ・バッテリー駆動できない機器がある場合は発電機を使用してもよいが、測定にノイズの影響が出ないことを事前に確認しておくこと。
- ・車両用バッテリーから電源を供給する場合には、車両電源の安定性及び機器の仕様を事前 に確認しておくこと。

4.1 測定場所の選定*1

放射能濃度の算出に当たっては、測定場所の状況が放射能濃度の解析結果に大きく影響するので、測定場所の選定には以下の点について注意が必要である。

- ・ 測定場所としては、解析の条件(無限平面)に近い場所、すなわち周囲が平たんで開けた場所(理想的には半径30m程度、最低でも半径10m程度開けた場所)を選定するのが望ましい。
- in-situ 測定法によって得られる放射能濃度は地表に沈着した量なので、降下した量と 比較検討するような場合には、アスファルト等で覆われた場所ではなく、放射性物質が 保持されていると考えられる草地又は裸地等が広がっている場所で、放射性物質が降下 した後、人の手の入っていないそのままの状態となっている場所が望ましい。
- 車によるγ線の遮へいを避けるため、運搬用車両は測定位置から離れた場所に駐車する。

ただし、放射性核種の特定又は空間放射線量率の算出を目的とする場合には、必ずしも無 限平面に近い場所である必要はない。

実際の環境中で測定場所を選定するに当たり、上記の点を満たした理想的な地点を選定す ることは困難である。in-situ 測定法は、周囲の地形、放射性物質の土壌中における鉛直分 布、検出器設置高さ等を仮定して解析を行うため、解析の条件と実際の条件が異なった場合 の解析結果への影響を把握しておく必要がある(第6章参照)。

4.2 測定

4.2.1 機器の設置手順

- (1) 選定した測定場所の中央に、Ge 半導体検出器を地表面から検出器結晶の幾何学的中 心までの高さが1mになるように下向きに架台にセットし、地表面の傾斜に合わせ、 検出器が地表面に対して平行になるように架台の脚を調整する。
- (2) ポータブル MCA 及び PC を 3 m 以上離れた場所に設置し^{*2}、検出器との間のケーブルを 接続する。MCA 及び PC を設置する台等を用いる場合は、地表からの γ 線の遮へいが少 なくなるよう、必要最小限の大きさとする。
- (3) 気象条件に応じて、機器内の温度を動作保証範囲内に保つような措置を講ずることに よって、温度によるゲイン変動を防止する。*³
- (4) 必要に応じて、架台の脚を地面に固定する等の転倒防止措置を講じる。
- 4.2.2 検出器の立ち上げ及び測定手順
- (1) PC 及び MCA の電源を入れ、Ge 半導体検出器に高電圧を印加する。しばらくウォーミングアップを行う。ウォーミングアップに必要な時間は機器によって異なるので、あら

^{*1} 解説 F 参照

^{*2} 汚染の可能性がある場所で測定する場合、汚染防止策(3.5.1 参照)を実施しておくこと。

^{*3} 夏季の炎天下の測定では日除け、冬季には保温カバー等を必要に応じて用いるとよい。

かじめ使用する機器について安定するまでの時間を把握しておく。

- (2)機器調整のための測定を実施する。通常、カリウム 40(1461 keV)等の自然放射性 核種に由来するピークが検出されるので、それらを用いてゲイン調整を行うが、原子 力災害時では検出された人工放射性核種によるゲイン調整を行うことを考慮する(解 説 D 参照)。測定中は電気的な安定性を考慮し、検出器本体及び MCA はバッテリー駆動 することが望ましい。
- (3) 測定時間をプリセットし、測定を開始する。測定時間は 30 分~1 時間程度とするが、 測定されたスペクトルを見てその都度判断する(解説 B 参照)。
- (4) デッドタイムを確認する。
- (5) 測定を開始したら、検出器周辺には近づかないようにする(地表からのγ線の遮へい を避けるため)。
- 4.2.3 測定中の確認

in-situ 測定で得られる y 線スペクトルには、通常は自然放射性核種に由来するピーク が検出されるので、それらを用いた測定中のスペクトル確認が可能である。

スペクトル上でカリウム 40 のピーク(1461 keV)の位置(中心チャネル)及び FWHM を 確認する。ピークが本来検出されるべき位置から 2 ch 以上ずれていた場合又は FWHM が大 きく変化した場合には、ウォーミングアップの不足又は機器に異常がある可能性が考えら れるため、再測定、又は機器の点検を行う。

4.2.4 測定終了時の手順

- (1) プリセットした測定時間に達しているかを確認する。
- (2) データ収集が停止しているのを確認した後、スペクトルをデータファイルに保存し、 ファイル名を記録する。
- (3) スペクトルを概観し、ノイズ又は予期しないピーク等の異常を発見したら原因究明、 再測定等の対応をとる。
- (4) in-situ 測定場所で解析を行う場合には、「4.4 スペクトル解析」参照。

以下の(5)~(7)の手順は、次の測定場所での測定までに十分なウォーミングアップ時間を とれない場合、運搬に支障がなければ必ずしも実施する必要はない。

- (5) 高圧電源をシャットダウンし、MCAの電源を切る。
- (6) PC をシャットダウンし、電源を切る。
- (7) MCA と検出器、MCA と PC の接続ケーブルを外す。
- (8) 検出器に衝撃を与えないように注意しながら支持架台から外し、運搬用ケースに収納 する。
- (9) 次の測定場所に移動する。

4.3 記録

測定場所及び測定に関して、以下の項目等を記録する。記録用紙の例を表 4.1 に示す。

- 4.3.1 測定場所に関する記録
 - (1) 測定場所周辺*4の状況を記録する。
 - ① 地形(平たん、傾斜地等)
 - ② 土地利用(グラウンド、神社等の一角、耕地、未耕地等)
 - ③ 地面の状況(草地、裸地、芝地、砂地、畑、樹園地、アスファルト等)
 - ④ 土壌の種類(砂質、壌質、粘質等)*5
 - ⑤ 草地等の広がりの範囲
 - ⑥ 土壌の状態
 - ⑦ 周囲の建物の状況(測定地点から建物までの距離、建物の大きさ、建材(木造、コンクリート等))
 - (2) 測定場所周辺の状況を写真撮影する。
 - (3) 測定地点付近の線量率をサーベイメータで測定し、記録する。*6
 - (4) GPS*7 が使用可能であれば、測定場所の緯度・経度を測定し、記録する。
 - (5) 天候(降雨状況を詳細に記録、可能ならば風向、風速及び気温等も記録)
- 4.3.2 測定に関する記録
 - ① 測定開始年月日、時間
 - ② 測定者
 - ③ 検出器及び測定器(型番、シリアル番号等)
 - ④ 測定スペクトルのデータファイル名
 - ⑤ 主要ピーク*8の中心チャンネル等
 - ⑥ スペクトルの特徴(特異的な形状又はFWHMの増加等があれば記録)

*7 Global positioning system

^{*4} 測定場所を中心として半径 30 m 程度の範囲について、状況を記録する。

^{*5} 土壌の分類は、放射能測定法シリーズ No.16「環境試料採取法」参照。また特殊な土壌(腐葉 土等)の場合はその内容を記録する。

^{*6} 局所的に線量率の高い、又は低い場所を測定していないことを確認するため。

^{*8} 通常検出される放射性核種及びγ線エネルギーについては表4.3 参照。

1. 測定場所に関する記録

(必要事項を記入、又は該当箇所を丸で囲む。書ききれない場合は備考欄に記入する。)

①測定場所			②測定地点				
 緯度 経度 	N: ° ′ E: ° ′	 王 侯 (特に降雨状況) 				⑤積雪 (cm)	
⑥地形	・平たん ・傾斜地 ・その他()	⑦土地利用	・グラウンド ・神社等の一f ・耕地 ・ ⁵ ・その他 (角 未耕地)	⑧土壌の 種類	・砂質 ・ ・ *粘質 ・その他(襄質)
⑨地面状況	 ・草地 ・裸地 ・芝地 ・砂地 ・畑 ・樹園地 ・アスファルト ・その他(⑩草地等の 広がりの 範囲			 ①土壌の 状態 	・湿めった ・乾いた状 ・その他 (伏態 態)
12周囲の建 物の状況	 ・有 ・無(30m以内) ・建物距離: m ・種類:木造、コンクリート、 その他() ・階数: 	⁽¹⁾線量率 測定			④写真 撮影	・有 ・ ・	嶣
⑮備考							

2. 測定に関する記録

(必要事項を記入、又は該当箇所を丸で囲む。書ききれない場合は備考欄に記入する。)

①測定開始年月日	年	月日	②測定	開始時間	時	分	③測定時間	秒
④測定者				E	〕検出器 器番号	・測定	検出器 No. 測定器 No.	
⑥測定スペクトル ファイル名				(7	〕スペク] 異 常	トルの	・無 ・有()
③主要ピーク				Peak(ch)				
回工安に 中心 ch (左記以外け備考	²¹² P b (239ke V)	²¹⁴ F (352k	b V)	²¹⁴ Bi (609keV)	²²⁸ Ac	v (V)	⁴⁰ K	FWHM (keV) ⁴⁰ K
欄に記載する)	(235Ke V)	(002K	- V)	(005Ke V)	(JIIKe	v) ((1401Ke V)	
⑨検出された 人工放射性核種								
⑩備考								

4.4 スペクトル解析

Ge 半導体検出器によって得られたスペクトルの解析は、スペクトル中に含まれる単色光子 に基づく全吸収ピークに着目して行う。測定機器メーカーが提供する解析ソフトウェアを用 いて自動的に解析することは可能であるが、その解析条件を確認した上で使用する必要があ る。解析条件の変更による定量上の誤差を避けるため、データの解析に当たっては、機器校 正時と in-situ 測定時で同一の解析条件を用いることが重要である。解析条件を変更する場 合には、条件の違いが解析結果に及ぼす影響を事前に確認しておくことが望ましい。

4.4.1 解析の手順

4.4.2 ピーク探査、核種同定及びピーク面積算出

ピーク探査、核種同定及びピーク面積算出については、通常のγ線スペクトロメトリー と同様であるため、放射能測定法シリーズ No.7「ゲルマニウム半導体検出器によるガンマ 線スペクトロメトリー」を参考に実施する。

平常時に一般的に検出される放射性核種を表 4.2 に示す。

表 4.2 in-situ 測定において一般的に検出される放射性核種

	人工放射性核種		
ウラン系列	トリウム系列	その他	
²¹⁴ Pb ²¹⁴ Bi	²⁰⁸ Tl ²¹² Pb ²¹² Bi ²²⁸ Ac	⁴⁰ K ⁷ Be	¹³⁷ Cs

原子力災害時等には、人工放射性核種の多数のピークが検出されることが想定されるた

- め、核種同定及びピーク面積を算出する際のデータ解析には注意が必要である。 in-situ測定スペクトル例を解説Cに示す。
- 4.4.3 エネルギー校正

エネルギー校正については、野外での測定であり、温度変化の影響又は電源投入後比較 的短時間の内に測定を開始しなければならないことなどから、in-situ 測定特有の注意が 必要である。実験室等でのγ線源を用いたエネルギー校正時から、温度変化等によってア ンプのゲインが変化し、ピークがシフトしてしまう可能性があるため、in-situ 測定した スペクトルについて、その中に検出されたエネルギー既知のピークを用いてエネルギー校 正を再度実施する。in-situ 測定では、大抵の場合自然に存在する放射性核種が検出され るため、それらのピークを利用することができる。放射性核種とγ線エネルギーの一例を 表 4.3 に示す。原子力災害時においては、バックグラウンドレベルの上昇に伴い、表 4.3 の放射性核種のうち、特に低エネルギー領域の放射性核種が校正に利用できない可能性が ある。その場合、表 4.4 のような原子力災害に伴い放出された人工放射性核種のγ線エネ ルギーを利用してエネルギー校正を行う必要がある(解説 D 参照)。

表 4.3 エネルギー校正に利用できる自然に存在する放射性核種とγ線エネルギー

核種	γ線エネルギー(keV)	放出比*
²¹² Pb	239	0. 434
²¹⁴ Pb	352	0.369
²⁰⁸ TI	583	0.306
²¹⁴ Bi	609	0.469
228 Ac	911	0.290
⁴⁰ K	1461	0. 107
²⁰⁸ TI	2615	0. 359

* ²³⁸U 及び ²³²Th 系列については親核種の壊変当たりの放出比

(ICRU Rep.53 Table 3.4から抜粋)

表 4.4 原子力災害時にエネルギー校正に利用できる人工放射性核種とγ線エネルギーの例

核種	γ線エネルギー (keV)	放出比
¹³⁴ Cs	605	0.975
¹³⁷ Cs	662	0.849
¹³⁴ Cs	796	0.851
^{110m} Ag	885	0.729
^{110m} Ag	1384	0.243
^{110m} Ag	1505	0.131

(ICRU Rep.53 Table A.1から抜粋)

第5章 放射能濃度及び空間放射線量率の算出

5.1 解析の条件

in-situ 測定では、地表面に沈着した放射性物質について放射能濃度(単位面積当たりの放射能: Bq/cm²)及び空間放射線量率を算出することができる。これらを評価するために、Beck らが開発した HASL の解析法(以下「HASL 方式」という。)が世界的に利用されており、また国際放射線単位測定委員会(ICRU)においてもこの方式が採用されていることから、測定法においても HASL 方式に基づいて解析を行うものとする。

HASL 方式では、周囲の地形、放射性物質の土壌中における鉛直分布、検出器設置高さ等の幾つかの条件を仮定した上で放射能濃度及び空間放射線量率を算出する。仮定条件を表 5.1 に示す。

表 5.1 in-situ 測定における仮定条件

条件	内容		
周囲の地形	無限に開かれた平らな地形(無限平面)		
放射性物質の土壌中に おける鉛直分布	式 (5.1) で示す分布		
検出器設置高さ	地上高 1m		

土壌中の重量深度 Z における放射能濃度 A(Z) は次のように表わせる。

$$A(Z) = A_0 \cdot \exp(-\frac{Z}{\beta}) \tag{5.1}$$

A(Z):重量深度 Z における放射能濃度 (Bq/g)

Z : 重量深度(g/cm²)
 単位面積当たりの土壌の重量で表される地表面からの深度。

- *A*₀ : 地表面における放射能濃度(Bq/g)
- β : 重量緩衝深度(g/cm²) 放射性物質の土壌中における鉛直分布を表すパラメータ。浸透 の程度を表し、数値が大きい程深く浸透していることを示す。

 β の値は放射能濃度が地表の 37 % (=1/e) になる重量深度であり、地表面分布の場合 β は限りなく 0 に近づき、土壌中均質分布の場合無限大となる。指数関数モデルは単なる 近似であるが、放射性物質の沈着後ある程度の期間においてはかなり現実的なものである。

時間の経過とともに放射性物質の移動・拡散によってある深さにピークをもつような分 布となったり、土地の利用、侵食及び除染等によって指数分布ではなくなる可能性がある。 しかしながら、これらのような場合であっても、地上での測定結果を土壌中線源に関連付 けるために、実効的なβを用いることができる(解説 E 参照)。

$$A_a = \beta \cdot A_0 \tag{5.2}$$

5.2 放射能濃度の算出

5.2.1 地表に沈着した放射性物質の解析

地表に沈着した放射性物質の評価について、放射能濃度 A_a(単位面積当たりの放射能; Bq/cm²)は、以下の式によって算出する。

$$A_a = N_f / \frac{N_f}{A_a}$$
(5.3)

A_a: 単位面積当たりの放射能(Bq/cm²)

N_f: in-situ 測定におけるあるエネルギーEのピーク計数率(s⁻¹)

N_f/A_a: in-situ 測定における効率

N_f/A_aは、以下の式によって算出する。

$$\frac{N_f}{A_a} = \frac{N_0}{\phi} \cdot \frac{N_f}{N_0} \cdot \frac{\phi}{A_a}$$
(5.4)

- N₀ :検出器軸方向(0°)から入射するエネルギーEのγ線によるピーク計数
 率(s⁻¹)
- ϕ :フルエンス率(cm⁻²s⁻¹)

(1) N_0 / ϕ

 N_0/ϕ は、検出器軸方向(0°)でのフルエンス率(cm⁻²s⁻¹)当たりのピーク計数率(s⁻¹)である。この値は検出器に依存するもので、測定を行う者が検出器ごとに γ 線源を測定して算出する。

- ・ 検出器の軸方向で1 m以上の距離にエネルギーの異なる幾つかの線源を設置する。
- ・ 測定を行い、Noを算出する。
- ・
 øは以下の式によって算出する。

$$\phi = \frac{\mathbf{S} \cdot \mathbf{a}}{4 \cdot \pi \cdot \mathbf{r}^2} \quad \mathbf{e}^{-\mu_{\mathbf{a}}\mathbf{x}} \quad \mathbf{e}^{-\mu_{\mathbf{h}}\mathbf{y}} \tag{5.5}$$

- S: γ線源の放射能(Bq)
- a: γ線の放出比
- μ_a : γ 線の空気中における減弱係数(cm⁻¹)
- x : 線源から検出器キャップ表面までの距離(cm)
- _{μ_h}: γ線の線源体中(土壤中)における減弱係数(cm⁻¹)
- y:線源体中(土壤中)の通過距離(cm)
- r*1:線源から検出器実効中心までの距離(cm)
 - 1) γ線のエネルギーが 1 MeV を超える場合、検出器の実効中心 は Ge 結晶の幾何学的中心とする。
 - 2) γ線のエネルギー0.1 MeV 未満の場合、検出器の実効中心は Ge 結晶の表面とする。
 - 3) 上記 1) 2) の間のエネルギーの場合、次の式で r を算出する。

$$r = \frac{1}{\mu} \cdot \frac{1 - e^{-\mu d} (\mu d + 1)}{1 - e^{-\mu d}} + d_0 + x$$

μ:γ線の Ge 結晶中における減弱係数(cm⁻¹)

d :Ge 結晶の厚さ(cm)

d₀:検出器キャップ表面と Ge 結晶表面の距離(cm)

線源から検出器実効中心までの距離(r)の計算例を表 5.2.1 に示す。

空気による減弱(e^{-µ_ax})の計算例を表 5.2.2 に示す。

γ線の線源体中(土壤中)における減弱係数(μ_h)を表 5.2.3 に、その計算に使用さ れた土壌の構成成分を表 5.2.4 に示す。

No/ ゆを算出し、エネルギーの関数として表す。例を図 5.1 に示す。

^{*1} 線源と検出器との距離を決める場合、検出器が有限の大きさをもつため検出器の「実効中心」 という考えを導入すると便利である。実効中心の導出には幾つかの方法があるが、ここでは IAEA TECD0C-1092(1999)による方法を示す。

表 5.2.1 線源から検出器実効中心までの距離(r)の計算例

単位:(cm)

γ線エネルギー	μ	Ge 結晶の厚さ d (cm)				
(MeV)	(cm^{-1})	4	5	6	7	8
0.1	2.94	100.8	100.8	100.8	100.8	100.8
0.15	1.32	101.2	101.3	101.3	101.3	101.3
0.2	0.883	101.5	101.6	101.6	101.6	101.6
0.3	0.601	101.8	101.9	102.0	102.1	102.1
0.4	0.496	101.9	102.1	102.2	102.3	102.4
0.5	0.437	101.9	102.2	102.3	102.4	102.5
0.6	0.397	102.0	102.2	102.4	102.6	102.7
0.8	0.342	102.1	102.3	102.5	102.7	102.9
1	0.305	102.1	102.4	102.6	102.8	103.0

x: 線源から検出器キャップ表面までの距離 = 100cm

μ: γ線の Ge 結晶中における減弱係数(cm⁻¹)

d_o: 検出器キャップ表面と Ge 結晶表面の距離(cm) = 0.5cm

表 5.2.2 空気による減弱(e^{-µax})の計算例

γ線エネルギー (MeV)	20℃における線減弱係数* (×10 ⁻⁴ cm ⁻¹)	1mの距離での 空気による減弱
0.06	2. 159	0.979
0.08	1.945	0.981
0.1	1.820	0.982
0.15	1.616	0.984
0.2	1.476	0.985
0.3	1.281	0. 987
0.4	1.148	0. 989
0.5	1.048	0. 990
0.6	0.9689	0.990
0.8	0.8513	0.992
1	0.7649	0.992
1.5	0. 6227	0.994
2	0. 5351	0.995

*PHOTX データベース

y 線エネルギー	土壌の質量減弱係数*	土壌の線減弱係数**
(keV)	(cm^2/g)	(cm^{-1})
20	2.78	4.45
25	1.52	2.43
30	0.938	1.50
35	0.644	1.03
40	0.471	0.754
45	0.381	0.610
50	0.314	0.502
55	0.277	0. 443
60	0.248	0.397
65	0.230	0.368
70	0.214	0.342
75	0.202	0. 323
80	0.190	0.304
85	0.185	0.296
90	0.178	0.285
95	0.173	0.277
100	0.167	0.267
150	0.139	0. 222
200	0.125	0.200
250	0.115	0.184
300	0.108	0.173
350	0.101	0.162
400	0.0963	0.154
450	0.0919	0.147
500	0.0875	0.140
550	0.0844	0.135
600	0.0813	0. 130
650	0.0788	0.126
700	0.0756	0. 121
750	0.0731	0.117
800	0.0713	0.114
850	0.0694	0.111
900	0.0675	0.108
950	0.0650	0.104
1000	0.0638	0.102
1500	0.0521	0.0834
2000	0.0449	0.0718
2500	0.0401	0.0642
3000	0.0364	0.0582

表 5.2.3 γ線の線源体中(土壌中)における減弱係数(μh)

*HASL-258 から引用

**土壤密度 1.6 g/cm³として計算

構 成		
13.5 重量%		
4.5 "		
67.5 "		
4.5 "		
10 "		
1.6 g/cm ³		

表 5.2.4 土壌の構成成分

(HASL-258 から引用)

P1~P5及びO1~O3は検出器の種類、右側の数字は相対効率を示す。

(HASL-300 から引用)

(2) N_f / N_0

N_t/*N_o* は検出器の方向依存性を補正するための項で、環境 γ線の入射方向と検出器の方向依存性を考慮して以下の式によって算出する。

$$\frac{N_f}{N_0} = \int_0^{\frac{\pi}{2}} \frac{\phi(\theta)}{\phi} \frac{N(\theta)}{N_0} d\theta$$
(5.6)

- φ(θ)/φ:あるジオメトリにおいて、エネルギーEの環境γ線がθの角度から
 検出器に入射する割合。例として、セシウム137(662 keV)に対し
 て幾つかのジオメトリについて計算した結果を図5.2 に示す。なお、
 この値はγ線エネルギーによって大きく変化しない。
- N(θ)/N₀:エネルギーEのγ線がθの角度から入射する場合の相対感度(0°
 での感度を基準)。エネルギーの異なる幾つかのγ線源を用いて入 射角度を変えて照射を行い算出する。

(JAERI-M 6498 から引用)

Ge 結晶の長さ(L)と直径(D)がほぼ同じ検出器の場合には、検出器感度の角度 依存性が小さいため、補正項 N_f/N_0 は1に近く、また in-situ 測定では多くの γ 線が水 平に近い方向から入射するため、その方向だけの照射で機器を校正することもできる。 その場合式(5.4)は以下のような単純な式となる。

$$\frac{N_f}{A_a} = \frac{N_{90}}{\phi} \cdot \frac{\phi}{A_a} \tag{5.7}$$

N₉₀ :検出器軸に対し 90°方向から入射するあるエネルギーEのγ線によるピーク計数率(s⁻¹)。
 in-situ測定では通常検出器を下向きにして使用し、環境γ線の多くは水平方向から入射するため、N₉₀=N_fとすることができる。

(3) ϕ / A_a

 ϕ/A_a は、土壌中放射能濃度(A_a)と検出器位置(1 m の高さ)の γ 線フルエンス率の関係を示し、線源分布によって異なった値となる。代表的な核種について、放射性物質の土壌中における鉛直分布(β)ごとに、 ϕ/A_a の値を付表-1に示す。

 β の値は実測から求めることが理想的であるが、通常は相当な困難が伴う。そのため、目安として放射性物質沈着後の経過時間及び降水量に応じて、基本的に表 5.3の値を用いることができる。また、透過性のない地表面(屋根、アスファルト、コンクリート)の場合には、 β は 0.1 g/cm²が適している。表 5.3 の値は、土質が特殊(腐葉土等)ではなく、人間活動による土地の乱れがない場合に適用できる。また、in-situ 測定場所における土壌を層別に採取して人工放射性物質の深度分布を評価することで、より高い精度で in-situ 測定結果を解析することができる。

なお、放射性物質の土壌中における鉛直分布を正確に把握することが in-situ 測定の信頼性を高める最も効果的な方法であることから、詳細を解説 E に記載した。

沈着後の経過時間 (年)	沈着後の 降水量(mm)	鉛直分布を表すパラメータ eta (g/cm ²)	
0~1	<3	0.1	
0~1	≥3	1.0	
1~5	-	3. 0	
5~20	_	10	

表 5.3 放射性物質の土壌中における鉛直分布の推奨値

(ICRU Rep. 53 から引用)

5.2.2 土壌中に均質に分布する放射性物質の解析

ウラン系列核種、トリウム系列核種及びカリウム 40 など土壌中に均質に分布している と考えられる自然に存在する放射性物質についても、前述と同様に算出することができる。 ただし、放射能濃度は、単位重量当たりの放射能 *A*_aとなり、単位は Bq/g である。均質分 布として計算した *ø*/*A*_aを表 5.4 に示す。

大抵の自然状況において、自然に存在する放射性物質が土壌中に均質に分布するとの仮 定は有効である。ただし、近くに建造物がある場合には、その中にも自然に存在する放射 性物質が存在し、その影響を受けるため注意が必要である。

なお、ウラン系列核種を解析する場合には放射平衡について注意が必要である。ラドン 222 が土壌から散逸するため、ラドン 222 の壊変生成物である鉛 214、ビスマス 214 など は低い値を示すことがある。ラドン 222 の散逸は一般的に 15 %程度であるが、大気中の 壊変生成物が測定に影響するため、一概に過小評価の程度を決めることはできない。また、 降雨時には雨滴とともにラドン 222 及びその壊変生成物が地表面に集まるため、降雨時及 び降雨後数時間以内の測定は、土壌中のウラン系列核種を解析する場合には適さない。

ウラン系列のラジウム 226 は、放出γ線のエネルギー (186 keV) がウラン 235 (186 keV) と重なるため、定量に用いることはできない。

	エネルギー			
系列	核種	(MeV)	放出比*	$(cm^{-2}s^{-1})/(Bq/g)$
²³⁸ U	214 Pb	0.295	0.192	0.828
	11	0.352	0.369	1.71
	²¹⁴ Bi	0.609	0.469	2.75
	11	0.665	0.0158	0.0965
]]	0.768	0.0497	0.325
]]	0.934	0.0319	0.229
	^{234m} Pa	1.001	0.00845	0.0629
	²¹⁴ Bi	1.120	0.155	1.22
]]	1.238	0.0610	0.507
]]	1.378	0.0410	0.361
]]	1.408	0.0250	0.223
	11	1.509	0.0220	0.203
	11	1.730	0.0300	0.298
]]	1.765	0.162	1.62
]]	1.847	0.0216	0.222
]]	2.119	0.0125	0.138
	11	2.204	0.0525	0.592
	11	2.448	0.0162	0.193
²³² Th	²¹² Pb	0.239	0.434	1.73
	224 Ra	0.241	0.0397	0.158
	228 Ac	0.338	0.120	0.547
	11	0.463	0.0464	0.241
	²⁰⁸ T1	0.511	0.0809	0.438
]]	0.583	0.306	1.76
	²¹² Bi	0.727	0.0675	0.430
	228 Ac	0.795	0.0484	0.322
	²⁰⁸ T1	0.861	0.0453	0.313
	228 Ac	0.911	0.290	2.060
	11	0.965	0.0545	0.398
]]	0.969	0.175	1.282
	11	1.588	0.0371	0.352
	²¹² Bi	1.621	0.0149	0.143
	²²⁸ Ac	1.630	0.0195	0.187
	²⁰⁸ T1	2.615	0.359	4.418
40 K	⁴⁰ K	1.461	0.107	0.971

表 5.4 土壌中放射性核種濃度と地上高 1 m での γ 線フルエンス率との関係 (φ/A_m) (放射性物質が土壌中に均質に分布している場合)

* ²³⁸U 及び ²³²Th 系列については親核種の壊変当たりの放出比

(ICRU Rep.53から引用)

5.3 空間放射線量率の算出

地表に沈着した放射性物質又は土壌中に均質に分布する放射性物質による地上高1mに おける空間放射線量率(以下「線量率」という。)は、以下の式によって算出する。

$$I = N_f / \frac{N_f}{I}$$
(5.8)

I :線量率(空気吸収線量率:μGy/h、又は周辺線量当量率:μSv/h)

N_f :in-situ 測定におけるあるエネルギーEのピーク計数率(s⁻¹)

N_f/Iは、以下の式によって算出する。

$$\frac{N_f}{I} = \frac{N_0}{\phi} \cdot \frac{N_f}{N_0} \cdot \frac{\phi}{I}$$
(5.9)

No : 検出器軸方向(0°)から入射する y 線によるピーク計数率(s⁻¹)

 ϕ : フルエンス率(cm⁻²s⁻¹)

式(5.9)は、放射能濃度 A が線量率 I に変わった以外は、式(5.4)と同様である。 ϕ /Iは、あるジオメトリにおける放射性物質からのエネルギーE の y 線による y 線フルエン ス率とその放射性物質からの全線量率との関係を表す係数である。線量率 I には、エネル ギーE の y 線の一次線による線量率だけではなく、散乱線及びその放射性物質から放出さ れる全ての y 線の寄与を含める必要がある。散乱線の評価にはモンテカルロ計算、又はボ ルツマン輸送方程式を用いる必要がある。放射性物質が土壌中に指数分布している場合に ついて計算された ϕ /I の値を付表-2-1 (空気吸収線量率: μ Gy/h 単位)及び付表-2-2 (周 辺線量当量率: μ Sv/h 単位)に、土壌中に均質に分布している場合(自然に存在する放射 性物質)についての ϕ /I を表 5.5 に示す。ウラン系列核種及びトリウム系列核種の ϕ /I は、系列内のある核種から放出されるある y 線のフルエンス率と、系列内の全ての核種か ら放出される y 線による線量率との関係を表している。したがって、ある核種のある y 線 について線量率を算出すると、その系列の全ての核種からの線量率^{*1}となる。系列内の複 数の核種(ウラン系列: ²¹⁴Pb、²¹⁴Bi 等)から放出される y 線、又は一つの核種から放出さ れる複数のエネルギーの y 線 (²¹⁴Bi: 609 keV、1765 keV 等)について解析を行う場合、 それぞれの y 線から算出した線量率を平均^{*2} して、その系列の線量率とする。

また、線量率は、放射能濃度から算出することも可能である。指数分布の場合の換算係

^{*1} in-situ 測定の対象エネルギー範囲を2 MeV までとした場合でも、測定された核種の2 MeV 以下のy線を解析して得られる線量率には、その核種が属する系列の2 MeV 以上のy線による寄与分も含まれることになるので、3 MeV まで測定した NaI(T1)シンチレーション検出器等による線量率と同等の結果を得ることができる。

^{*2} 計数誤差を用いて荷重平均する。
数を付表-3-1(空気吸収線量率:μGy/h 単位)及び付表-3-2(周辺線量当量率:μSv/h 単位)に示す。均質分布(自然に存在する放射性物質)の場合の換算係数(空気吸収線量 率:μGy/h単位)を表 5.6に示す。表 5.6中のウラン系列及びトリウム系列の合計の値は、 系列核種が放射平衡となっているとして算出している。^{*3}

^{*3} ウラン系列核種には気体のラドンが含まれるため、放射平衡が成立していないことが考えられ るが、in-situ 測定において測定対象となるのはラドン 222 以降の鉛 214 及びビスマス 214 など であり、また線量に寄与するのも鉛 214 及びビスマス 214 のγ線が主であるため、通常放射平衡 が成立していないことを問題にする必要はない。

		エネルギー	
系列	核種	(MeV)	$(cm^{-2}s^{-1})/(u Gv/h)$
			(cm 5)/ (µ 6)/ m
²³⁸ U	²¹⁴ Pb	0.295	1.79
-]]	0.352	3. 70
	²¹⁴ Bi	0.609	5.95
]]	0.665	0.209
]]	0.768	0.703
]]	0.934	0.496
	^{234m} Pa	1.001	0.136
	$^{214}\mathrm{Bi}$	1.120	2.64
]]	1.238	1.10
]]	1.378	0.781
]]	1.408	0.483
]]	1.509	0.439
]]	1.730	0.645
]]	1.765	3.51
]]	1.847	0.481
]]	2.119	0.299
]]	2.204	1.28
]]	2.448	0.418
²³² Th	²¹² Pb	0.239	2.86
	224 Ra	0.241	0.262
	228 Ac	0.338	0.906
]]	0.463	0.399
	²⁰⁸ T1	0.511	0.725
]]	0.583	2.91
	²¹² Bi	0.727	0.712
	$^{228}\mathrm{Ac}$	0.795	0.533
	²⁰⁸ T1	0.861	0.518
	228 Ac	0.911	3.41
]]	0.965	0.659
]]	0.969	2.12
	11	1.588	0.583
	²¹² Bi	1.621	0.237
	²²⁸ Ac	1.630	0.310
10	²⁰⁸ T1	2.615	7.31
⁴⁰ K	⁴⁰ K	1.461	23.3

表 5.5 土壌中に均質に分布する放射性物質による地上高 1 m での線量率と γ線フルエンス率の関係 (φ/I)

線量率(*I*)は、系列核種の放射平衡が成立しているものとして、 系列核種全てによる線量率とする。

	放射能濃度当たりのカーマ率
核種	$(\mu \mathrm{Gy/h}) / \mathrm{(Bq/g)}$
238++	
u series	(a.a. (a. .
200	4. 33 • 10 5
234	5. $14 \cdot 10^{-5}$
²³⁴ Th	9. 47 • 10^{-4}
^{234m} Pa	3. 00 • 10^{-3}
²³⁴ Pa	4. 49 • 10^{-4}
²³⁰ Th	6.90 • 10^{-5}
²²⁶ Ra	$1.25 \cdot 10^{-3}$
²²² Rn	8. 78 • 10^{-5}
²¹⁴ Pb	5. 46 • 10^{-2}
²¹⁴ Bi	4. 01 • 10^{-1}
²¹⁰ T1	1. 15 • 10^{-4}
²¹⁰ Pb	$2.07 \cdot 10^{-4}$
Total	4. 62 • 10^{-1}
²³² Th series	
²³² Th	4. 78 • 10^{-5}
²²⁸ Ra	5. $45 \cdot 10^{-5}$
²²⁸ Ac	2. 21 • 10^{-1}
²²⁸ Th	3. 44 • 10^{-4}
²²⁴ Ra	2. 14 • 10^{-3}
²²⁰ Rn	$1.73 \cdot 10^{-4}$
²¹² Ph	$2 77 \cdot 10^{-2}$
²¹² Bi	$2 72 \cdot 10^{-2}$
²⁰⁸ T1	$3 26 \cdot 10^{-1}$
Total	$6.04 \cdot 10^{-1}$
40K	$4 \ 17 \cdot 10^{-2}$
11	1. 11 10

表 5.6 土壌中放射能濃度と地上高 1 m での線量率の関係 (I / Am)*

(放射性物質が土壌中に均質に分布している場合)

* 放射平衡が成立しているとしての値である。

(ICRU Rep.53から引用)

in-situ 測定法は、周囲の地形、検出器設置高さ等を仮定して解析を行うため、解析条件 と実際の条件が異なった場合の解析結果への影響を把握しておく必要がある。

6.1 解析条件と実際の測定条件が異なった場合の影響

6.1.1 周辺地形の広がり

in-situ 測定で放射能濃度を算出する際に必要な係数(式 5.4 の ϕ/A 、付表-1 及び表 5.4 の ϕ/A 、付表-1 及び表 5.4 の値)は、 γ 線を減弱させるような障害物が周囲になく、無限に開かれた地形(無限平面)を仮定しての計算値である。しかし、実際の測定では完全な無限平面地形はあり得ないため、 無限平面を仮定して放射能濃度を解析すると過小評価となる。セシウム 137 が土壌中に指数 分布(β :4.8 g/cm²)している場合の地上 1 m 位置の γ 線フルエンス率について、周囲から の寄与割合を図 6.1 に示す。検出器を中心とした半径 10 m からの寄与分は無限平面全体から の寄与の 85 %に相当する。無限平面でないことに伴う過小評価の程度は、放射性物質の土 壌中における鉛直分布によって異なり、厳密には γ 線エネルギーにも依存する。詳細は解説 F.1 に記載した。

この過小評価については、放射性物質の沈着の範囲を特定できる場合には、表 6.1 の補正 係数を用いて補正することができるが、典型的な状況では補正を行わなくても過小評価の程 度は数十%以内である。ただし、βが 0.1 g/cm²で半径 10 m 程度の狭い範囲にだけ放射性物 質が沈着している場合は、過小評価の程度が大きいので補正を考慮する必要がある。

補正方法としては、検出器を中心として放射性物質の沈着の範囲(平均的な半径)をメジ ャー又はテープを用いて算出し、放射能濃度の測定値に表 6.1 の補正係数を乗ずる。表 6.1 は、600 keV のγ線を対象とした場合の補正係数であるが、エネルギーの違いによる補正係 数の差異は大きくないため、その他のエネルギーに対しても適用することができる。人工放 射性物質がフォールアウトとして降下してある程度時間が経過した場合など、アスファルト 又は建造物への沈着が少なく、草地又は露地等に放射性物質が沈着していると考えられる場 合には、草地又は露地等の範囲を基に補正を行う。原子力災害時の初期の段階など、沈着の 範囲を特定できないような場合には補正は困難であるため、補正を行う場合は沈着後に行う 必要がある。

なお、定点での変動監視を目的として in-situ 測定を行う場合には、必ずしも補正の必要 はない。

また、周辺地形の広がりの違いによる線量率への影響はわずかであるため、線量率の測定 値については補正する必要はない。

6.1.2 検出器の設置高さ

検出器の設置高さについては、通常1mの高さに設置するので補正する必要はない。検出 器の設置高さの放射能濃度測定値への影響を解説 F.2 に記載した。

6.1.3 土壤中水分

土壌中水分については、土壌中における放射性物質の鉛直分布(解説 E 参照)の影響に含まれるので補正する必要はない。土壌中水分の放射能濃度測定値への影響を解説 F.3 に記載した。

>10m-15%

図 6.1 セシウム 137 が土壌中に指数分布(β:4.8 g/cm²)している場合の地上高1 m での γ 線フルエンスの周囲からの寄与割合 (HASL-300 から引用)

鉛直分布を表すパラメータ	放射性物質の沈着の範囲(半径: m)							
β (g/cm ²)	10	15	20	25				
0. 100	1.6	1.4	1.3	1.2				
1.00	1.3	1.2	1.1	1.1				
3. 00	1.2	1.1	1.1	1.1				
10.0	1.1	1.1	1.0	1.0				
4.8	1.2	1.1	1.1	1.0				
∞(均質分布)	1.1	1.0	1.0	1.0				

表 6.1 周辺地形の広がりに対する補正係数

6.2 測定結果の精度管理

6.2.1 日常及び定期点検

in-situ 測定において信頼性のある測定結果を得るためには、以下のような日常及び定期 点検を実施することが望ましい。

日常点検

- ・検出器を常時冷却している場合には、検出器温度(温度のモニタが可能な場合)と液 体窒素消費量(液体窒素冷却方式のみ)を確認する。
- ・コバルト60等の線源を用いてエネルギー分解能を確認する。

定期点検

- ・ピーク効率を確認する(3.4.2参照)。
- ・測定機器メーカー等による機器点検を実施する。

6.2.2 相互比較測定

in-situ 測定における測定結果の信頼性向上のための精度管理の一環として、測定機器 間の相互比較測定が有効である(解説 I 参照)。原子力災害時等において in-situ 測定を急 遽実施することも想定されるため、日頃から定期的に機器の状態を確認しておくことも重 要である。また、広範囲に沈着した放射性物質の分布状況を調査するために、複数の測定 機器で分担して測定を実施する場合には、測定機器間の測定精度に大きな差がないことを 事前に確認しておくことが望ましい。 解 説

解説 A シミュレーション計算によるピーク効率の算出

解說 A.1 概説

標準点線源を使わずに、シミュレーション計算によってピーク効率を算出することも可能 である。計算コードとして MCNP モンテカルロコード等を用いたピーク効率シミュレーション ソフトウェアが利用されている。 γ線エネルギー及び幾何学的条件(距離、入射角度等)と の関係について検出器をあらかじめモデル化することによって、任意のエネルギー、測定試 料の形状、大きさに対応したピーク効率を短時間で作成することができる。

ただし、トレーサビリティの確保された標準点線源を用いてのピーク効率校正とは異なる ため、シミュレーション計算によって得られたピーク効率の信頼性については、標準点線源 を用いて作成したピーク効率と比較することによって、定期的に確認しておくことが望まし い。

使用する場合には、検出器情報を含め計算条件をよく吟味し、更に計算結果の妥当性を十 分に確認した上で慎重に用いる必要がある。また、検出器のモデル化データがシミュレーシ ョン計算に必要であるため、検出器の特性が変化しない管理が重要となる。具体的には、Ge 半導体検出器を常に冷却し、検出器の不感層を変化させない管理をすることが望ましい。

解説 A.2 標準点線源で作成したピーク効率との比較

相対効率 30.1 %の Ge 半導体検出器を用いて、標準点線源によって作成したピーク効率(以下「線源効率」という。)とシミュレーション計算*1*2によって作成したピーク効率(以下「シ ミュレーション効率」という。)を比較し、表 A.1 に示した。

核種	エネルギー (keV)	線源効率 (A)	シミュレーション効率 (B)	比率 (B) / (A)
Am-241	59.5	1.729E-04	1.613E-04	0.933
Ba-133	81.0	1.676E-04	1.666E-04	0.994
Ba-133	356.0	8.353E-05	8.201E-05	0.982
Cs-137	661.7	5.119E-05	4.925E-05	0.962
Со-60	1173.2	3.060E-05	3.108E-05	1.016
Со-60	1332.5	2.715E-05	2.832E-05	1.043

表 A.1 線源効率とシミュレーション効率の比較

約 60 keV~1300 keV のエネルギー範囲において、線源効率とシミュレーション効率はおお むね5 %以内で一致していた。

in-situ 測定したスペクトルについて、それぞれのピーク効率を用いて U 系列、Th 系列、 ⁴⁰K、¹³⁴Cs、¹³⁷Cs について放射能濃度及び線量率を解析し、比較した結果を表 A. 2~A. 6 に示し た。なお、U 系列としては ²¹⁴Bi 及び ²¹⁴Pb を、Th 系列としては ²⁰⁸T1 及び ²²⁸Ac を解析対象核種 とした。

表 A.2 in-situ 測定スペクトルの解析結果の比較

	線源	「効率		シミュレー	・ション家	b 率		比率	
	(A)		(B)			(B) / (A)
	放射能濃度	線量率	核種組成 割合	放射能濃度	線量率	核種組成 割合	放射能 濃度	線量率	核種組成 割合
		nGy/h	%		nGy/h	%			
U系列	—	3.7	7.2	—	3.3	6.3	—	0.89	0.87
Th系列	_	5.8	11.3	_	6.2	11.6	_	1.05	1.03
K-40	1.99E-01 Bq/g	8.3	16.1	1.85E-01 Bq/g	7.7	14.5	0.93	0.93	0.90
Cs-134	2.98E+09 Bq/km^2	12.4	24.0	3.18E+09 Bq/km^2	13.2	24.9	1.07	1.07	1.04
Cs-137	$1.32E+10 \text{ Bq/km}^2$	21.3	41.3	1.40E+10 Bq/km^2	22.6	42.7	1.06	1.06	1.03
合計		51.6			53.1				

(草地1、 β :1.4 g/cm²)

*1 ピーク効率シミュレーションソフトウェア(計算コード: MCNP モンテカルロコード*2)を使用 した。

*2 Briesmeister, J.F., 「MCNP-A General Monte Carlo N-particle Transport Code Version 4C」, Los Alamos National Laboratory Report LA-13709-M (2000)

	表 A. 3	in-situ 測定スペク	トルの解析結果の比較
--	--------	---------------	------------

	線源	効率		シミュレー	・ションダ			比率	
	(A)		(B)			(B) / (A)
	放射能濃度	線量率	核種組成 割合	放射能濃度	線量率	核種組成 割合	放射能 濃度	線量率	核種組成 割合
		nGy/h	%		nGy/h	%			
U系列	—	37.1	36.4	_	36.6	34.8	—	0.99	0.96
Th系列	—	34.8	34.1	—	37.1	35.3	_	1.07	1.03
K-40	1.09E-01 Bq/g	4.5	4.4	1.01E-01 Bq/g	4.2	4.0	0.93	0.93	0.90
Cs-134	2.22E+09 Bq/km^2	9.2	9.0	2.37E+09 Bq/km^2	9.8	9.4	1.07	1.07	1.03
Cs-137	1.01E+10 Bq/km^2	16.3	16.0	$1.07E+10 \text{ Bq/km}^2$	17.4	16.5	1.06	1.06	1.03
合計	_	102.0			105.1				

(砂利、β:1.4 g/cm²)

表 A.4 in-situ 測定スペクトルの解析結果の比較

	線源	〔効率		シミュレー	-ションダ	力率		比率	
	(A)		(B)			(B) / (A)
	放射能濃度	線量率	核種組成 割合	放射能濃度	線量率	核種組成 割合	放射能 濃度	線量率	核種組成 割合
		nGy/h	%		nGy/h	%			
U系列	—	10.1	20.7		9.7	20.0	—	0.96	0.96
Th系列	—	10.9	22.3	—	11.6	23.8	_	1.06	1.06
K-40	4.00E-01 Bq/g	16.7	34.0	3.71E-01 Bq/g	15.5	31.7	0.93	0.93	0.93
Cs-134	9.85E+08 Bq/km^2	4.1	8.4	$1.05\text{E+09}~\text{Bq/km}^2$	4.4	8.9	1.07	1.07	1.07
Cs-137	4.43E+09 Bq/km^2	7.2	14.6	4.72E+09 Bq/km^2	7.6	15.6	1.06	1.06	1.07
合計	—	49.0	—	_	48.8	—	—	—	—

(アスファルト、 β :1.4 g/cm²)

表 A.5 in-situ 測定スペクトルの解析結果の比較

(草地2、β:1.4 g/cm²)

	線源	「効率		シミュレー	・ション弦	b 率		比率	
	(A)		(B)			(B) / (A)
	放射能濃度	線量率	核種組成 割合	放射能濃度	線量率	核種組成 割合	放射能 濃度	線量率	核種組成 割合
		nGy/h	%		nGy/h	%			
U系列	_	8.3	17.9	—	7.8	16.6	—	0.94	0.93
Th系列		8.2	17.7	—	8.7	18.4	_	1.06	1.04
K-40	1.99E-01 Bq/g	8.3	17.8	1.84E-01 Bq/g	7.7	16.3	0.93	0.93	0.91
Cs-134	1.88E+09 Bq/km^2	7.8	16.8	2.00E+09 Bq/km^2	8.3	17.6	1.07	1.07	1.05
Cs-137	8.53E+09 Bq/km^2	13.8	29.7	9.07E+09 Bq/km^2	14.7	31.1	1.06	1.06	1.05
合計		46.4			47.2				_

	線调	刻率		シミュレー	-ション効	率		比率	
	(A)		((B)			(B) / (A)
	放射能濃度	線量率	核種組成 割合	放射能濃度	線量率	核種組成 割合	放射能 濃度	線量率	核種組成 割合
		nGy/h	%		nGy/h	%			
U系列	—	19.8	25.7	—	19.8	25.9	—	1.00	1.01
Th系列	—	25.6	33.3	—	27.3	35.7	_	1.06	1.07
K-40	7.57E-01 Bq/g	31.6	41.0	7.03E-01 Bq/g	29.3	38.4	0.93	0.93	0.94
Cs-134	- Bq/km ²	_	_	- Bq/km ²	_	_	_	—	_
Cs-137	- Bq/km ²	—		— Bq/km ²	—	—			—
合計	_	76.9		_	76.3	_			

表 A.6 in-situ 測定スペクトルの解析結果の比較

(コンクリート (建屋内地下)、β:1.4 g/cm²)

各放射能濃度及び線量率の解析結果はおおむね 10 %以内で一致していた。シミュレーシ ョン効率を運用する上では、定期的に線源効率で解析した結果との差を把握しておくことが 重要である。

解説 B.1 検出可能レベル(下限)と測定時間の関係

次の条件を基に、計数誤差の3倍となる値を検出可能レベルとし、表 B.1に示した。

- ・ セシウム 137 が地表 (無限平面) に分布
- 相対効率 25 %の Ge 半導体検出器を使用
- ・ バックグラウンドが日本の平均的なレベル (線量率 50 nGy/h)

測定時間	¹³⁷ Csの検出可能レベル				
	放射能濃度	線量率			
(分)	$(\mathrm{kBq/m}^2)$	(nGy/h)			
1	0.34	0.87			
5	0.13	0.32			
10	0.09	0.22			
20	0.06	0.15			
30	0.05	0.12			
60	0.03	0.08			

表B.1 検出可能レベルの例

検出可能レベルは、セシウム 137 以外の放射性核種の影響によって変動するので、ここに 示した値はあくまで参考とする。

なお、in-situ で 60 分間測定した場合の検出可能レベル(放射能)は、実験室でマリネリ 容器を用いて 10 時間測定した場合と同程度である。また、検出可能レベル(線量率)は1 mSv/ 年(約 140 nGy/h に相当)の約 1/1000 のレベルである。 解説 B.2 測定上限について

線量率が高い地点での測定は、光子の入射数が増加するため、検出器の不感時間(デッド タイム)が増大し、数え落とし又はパイルアップ等によって放射能濃度を過小評価する危険 性が高まることが想定される。また、作業効率の観点からも in-situ 測定の可否を判断する ために、測定上限を設定することが必要である。

一般的な MCA の性能として、検出器へ入射する光子の数(Input Count Rate)がある一定 以上まで増えると、検出される光子の数(Throughput Count Rate)は減少し(図 B.1)、分 解能は大きくなり(図 B.2)、デッドタイムは増大する(図 B.3)。また、デッドタイムの割合 (100-%Live time)が増大すると検出されたピーク面積の測定誤差は大きくなる(図 B.4)。

in-situ 測定時に Input Count Rate を用いて測定の可否を判断することは困難であるため、 実際の運用上では in-situ 測定前に判断できる目安があることが望ましい。

^{*1} [Performance of Digital Signal Processors for Gamma Spectrometry], Canberra Industries, Inc., Application Note (2008)

^{*2 「}Comparisons of the Portable Digital Spectrometer Systems」, Duc T. Vo, Phyllis A. Russo, LA-13895-MS, Los Alamos NATIONAL LABORATORY (2002)

そこで、in-situ 測定前にその場所で測定したサーベイメータの線量率から測定上限を判断することを検討した。福島県内において測定した結果(測定日:2012年8月~9月、同一機種の in-situ Ge 1 台分)を用いて、サーベイメータで測定した線量率と in-situ Ge のデッドタイムの関係を図 B.5 に示した。

図 B.5 サーベイメータによる線量率と in-situ Ge のデッドタイムの関係

図 B.5 の結果と次の条件を基に、サーベイメータによる線量率とデッドタイム及び測定時間の関係を、表 B.2 に示した。

- · 測定時間 30 分
- ・ 相対効率 20.6 %の Ge 半導体検出器を使用

サーベイメータで 測定した線量率	デッドタイム	測定時間
(µ Gy/h)	(%)	(分)
1	3	31
5	14	35
10	27	41
15	40	50
20	53	64

表 B.2 サーベイメータによる線量率とデッドタイム及び測定時間の関係

表 B.2 から、サーベイメータで測定した線量率が 20 μ Gy/h の時にデッドタイムが約 50 % になることが想定される。デッドタイムが 50 %の場合、測定に要する時間が 2 倍かかること になり、作業効率の観点から、更にデッドタイムが大きくなる地点での測定を実施すること は現実的ではないことから、20 μ Gy/h を測定上限とした。機種間によって処理時間が異な るので、ここで示した測定上限はあくまで目安である。

以上のように、線量率が高い地点では数え落とし又はパイルアップ等によって、デッドタ イムが大きくなり、検出器へ入射する光子の数(Input Count Rate)に対して検出される光 子の数(Throughput Count Rate)は減少する。

一方、対象となる人工放射性核種のピーク計数は増加するため、その人工放射性核種だけ を測定対象とする場合には短時間でも十分な測定精度が得られることが想定される。そのた め、測定対象核種、測定精度、作業員の安全面から総合的に判断して、測定上限及び測定時 間を設定することが重要である。線量率が高い地点における測定時間と測定精度の関係につ いて解説 B.3 に示した。 解説 B.3 線量率が高い地点における測定時間と測定精度の関係

線量率が高い地点での測定は、対象となる人工放射性核種のピーク計数の増加によって、 短時間の測定でも十分な精度が得られることが想定される。

次に示した福島県内における測定データを用いて検討を行い、in-situ 測定スペクトルを 図 B.6 に、検出された人工放射性核種の相対計数誤差を図 B.7 に示した。

福島県内における測定データ(2011年12月27日測定)

Real time: 4478.5秒 Live time: 3600秒 DT: 32.7 %

線量率:6 µ Sv/h

 134 Cs : 8. 0×10⁵ Bq/m², 137 Cs : 9. 3×10⁵ Bq/m², 110m Ag : 3. 5×10³ Bq/m²

図 B.6 in-situ 測定スペクトル

○¹³⁴Cs (605 keV) (1 時間測定)

総計数:2023934 カウント 正味計数:1906609 カウント ベース計数:117325 カウント 計数誤差:1463.3 相対計数誤差:0.077 %

○¹³⁷Cs (662 keV) (1 時間測定)

総計数:1971520 カウント 正味計数:1906912 カウント ベース計数:64608 カウント 計数誤差:1426.9 相対計数誤差:0.075 %

○^{110m}Ag (885 keV) (1時間測定)

総計数:9098 カウント 正味計数:4714 カウント ベース計数:4384 カウント 計数誤差:116.1 相対計数誤差:2.5 %

図 B.7 検出された人工放射性核種の相対計数誤差

図 B.7 から、線量率6 µSv/hの地点において、1時間測定を行った際の¹³⁷Csの相対計数誤 差は0.075 %であり、統計的精度として十分過ぎるものである。この測定データを基にして、 測定時間の変化による測定精度の変化を評価し、図 B.8 に示した。

図 B.8 測定時間と¹³⁷Csの相対計数誤差の関係

図 B.8 から、6 µSv/hのような高線量率地点の測定では、数分間の測定で相対計数誤差が 1%以下の測定が可能であり、十分な統計的精度を担保することが可能といえる。測定精度 を高めるための長時間測定は被ばく線量の増加を伴うことから、平常時とは異なり、短時間 の測定に切り替える必要がある。

解説 C in-situ 測定スペクトル例

富士山周辺における測定スペクトル(2001年3月7日)

福島第一原発事故から9か月後の千葉県における測定スペクトル(2011年12月7日)

福島第一原発事故前の千葉県における測定スペクトル(2010年12月2日)

福島第一原発事故から9か月後の福島県における測定スペクトル(2011年12月27日)

福島第一原発事故から3年8か月後の福島県における測定スペクトル(2014年11月27日)

・福島第一原発事故によるプルーム通過時の千葉県における測定スペクトル(2011年3月15日)

(屋外に上向きに常設されている in-situ Geの測定結果)

プルームを対象とした場合、放射性核種が空気中に一様に分布していることを想定して、 放射能濃度及び線量率を算出することが可能である。

解説 D 原子力災害時におけるエネルギー校正

原子力災害時においては、事故に伴い放出された多量の人工放射性核種の影響によって、 コンプトン連続領域の計数が増加することが想定される。表 D.1 の放射性核種のうち、特に 低エネルギー領域の核種についてはピークが確認できず、エネルギー校正に利用できない可 能性がある(図 D.1)。その場合には、表 D.2 のような原子力災害に伴い放出された人工放射 性核種のピークをエネルギー校正に利用することを考慮する必要がある。

表 D.1 エネルギー校正に利用できる自然に存在する放射性核種と y 線エネルギー

核種	γ線エネルギー (keV)	放出比*
²¹² Pb	239	0.434
214 Pb	352	0.369
²⁰⁸ TI	583	0.306
²¹⁴ Bi	609	0.469
²²⁸ Ac	911	0.290
⁴⁰ K	1461	0. 107
²⁰⁸ TI	2615	0. 359

* ²³⁸U 及び ²³²Th 系列については親核種の壊変当たりの放出比

(ICRU Rep.53 Table 3.4から抜粋)

表 D.2	原子力災害時にエネ	ルギー校正に利用でき	きる人工放射	寸性核種とγ線エ	ネルギーの例
-------	-----------	------------	--------	----------	--------

核種	γ線エネルギー(keV)	放出比
¹³⁴ Cs	605	0.975
¹³⁷ Cs	662	0.849
¹³⁴ Cs	796	0.851
$^{110\mathrm{m}}\mathrm{Ag}$	885	0.729
^{110m} Ag	1384	0.243
^{110m} Ag	1505	0. 131

(ICRU Rep.53 Table A.1から抜粋)

福島県内における測定データ(2011年12月27日測定)

Real time:4478.5秒 Live time:3600秒 DT:32.7 % 線量率:6 µSv/h

 $^{134}\text{Cs}: 8.0 \times 10^5 \text{ Bq/m}^2\text{, } ^{137}\text{Cs}: 9.3 \times 10^5 \text{ Bq/m}^2\text{, } ^{110\text{m}}\text{Ag}: 3.5 \times 10^3 \text{ Bq/m}^2$

図 D.1 低エネルギー領域の自然放射性核種がエネルギー校正に利用できない事例

解説 E.1 鉛直分布を表すパラメータβの評価

放射性物質の土壌中における鉛直分布を表すパラメータ β を正確に把握することが、 in-situ 測定の信頼性を高める最も効果的な方法であるが、 β は、土質、気象状況、経過 年数によって大きな変動を示すため、正確に評価するのは容易ではない。また、地表沈着 後の侵食及び人間活動による土地の乱れも考慮する必要がある。参考としてさまざまな研 究グループが報告したセシウムについての β を表 E.1 に示す。

 沈着後の	フォールアウ	\	βª	
経過時間	の種類	場所	g/cm^2	参照
3-4 weeks	Chernobyl	Western Russia	0. 1–2. 0^{b}	Golikov <i>et</i> <i>al</i> .,1993
5-6 weeks	Chernoby1	Germany	0. 5–1. 0 ^b	Jacob and Meckbach, 1992
<1y	Chernobyl	Sweden	2.2	Karlberg, 1987
<1y	Chernobyl	Germany	1.4	Winkelmann <i>et al</i> .,1988
<1y	Chernobyl	Germany	0. 5-4	Jacob <i>et al</i> ., 1994a
1-3y	Chernobyl	Germany	1.0-10	Jacob <i>et al</i> ., 1994a
1-3y	Chernoby1	Western Russia	1.4±0.2	Golikov <i>et</i> <i>al</i> .,1993
4y	Chernoby1	Western Russia	1-7	Miller <i>et al</i> ., 1991
4y	Chernoby1	Belarus, Ukraine	1. 4-5. 6	IAEA, 1991a
1-5y	Weapons test	Eastern U.S.	4.2	Beck, 1966
5y	Chernobyl	Western Russia	2-4.5	Jacob <i>et al</i> ., 1994a
3-6y	Chernobyl	Germany	2.5-15	Jacob <i>et al</i> ., 1994a
3-6y	Chernobyl	Ukraine	1-4	Jacob <i>et al</i> ., 1994a
3-6y	Chernobyl	Western Russia	3. 3 ± 0.7^{b}	Golikov <i>et</i> <i>al</i> ., 1993
>15y	Weapons test	Western U.S.	$14\pm4^{\circ}$	Beck and Krey, 1980
>15y	Weapons test	Western U.S.	2.9 \pm 1.6 ^d	Miller and Helfer, 1985
>15y	Weapons test	Southern U.S.	14-20	Faller, 1992
>15y	Weapons test	Eastern U.S.	2-7(forests) 8-19(fields)	Miller <i>et al</i> ., 1990

ª ±は標準偏差を示す。

^b 降雨による沈着。

。乾燥地域、潅漑した芝地。

^d 乾燥地域、未耕地。

(ICRU Rep.53から引用)

E.1.1 簡易的な評価方法

土質が特殊^{*1}ではなく、人間活動による土地の乱れがない場合には、放射性物質沈着後の 経過時間及び降水量に応じて、表 E.2(本文中の表 5.3)の値を用いることができる。表 E.2 のβの値は、地表の粗さの影響も考慮されている。また、福島第一原発事故後のβの経時変 化を図 E.1 に示した。

放射能濃度を解析する際、大きなβを用いるほど解析結果が高くなり安全側の評価になる。 したがって、放射性物質沈着後の経過時間又は降水量に不確定な要素がある場合には、想定 される範囲内で大きなβを用いる必要がある。

放射性物質の土壌中における鉛直分布を表す際、その場の土壌密度を考慮する必要がある ため、パラメータとしては β (g/cm²)、又は α / ρ (cm²/g)を用いるべきである。しかし、現在 市販されている解析ソフトの一部には放射性物質の土壌中における鉛直分布を表すパラメー タとして α (cm⁻¹)を入力するものがあるので、 β 及び α 等を換算するための表を表 E.2 に記載 した。

沈着後の 経過時間(年)	降水量 (mm)	$eta ({ m g/cm^2})$	RL (cm)	$lpha \ / \ ho$ (cm^2/g)	$lpha ({ m cm}^{-1})$
0~1	<3	0.1	0.063	10	16
0~1	≥3	1.0	0.63	1.0	1.6
1~5	-	3.0	1.9	0.33	0.53
5~20	_	10	6.3	0.10	0.16
専門部会報告書		4.8	3.0	0.21	0.33^{*2}

表 E.2 放射性物質の土壌中における鉛直分布を表すパラメータの換算表
 (土壌密度(ρ)を 1.6 g/cm³とした場合)

数値は一部を除き ICRU Rep.53 から引用

RL は β を土壌密度(ρ)で除したもの、 α / ρ は β の逆数、 α は RL の逆数である。

*1 森林地域では腐葉土の影響によってβは低い傾向にある。

*2 「発電用軽水型原子炉施設の安全審査における一般公衆の線量評価について」 原子力安全委員会(平成13年)

^{*3} データ提供:国立研究開発法人 日本原子力研究開発機構 松田 規宏

E.1.2 土壌を採取して評価する方法

より高い精度で in-situ 測定結果を解析する場合、in-situ 測定場所の土壌中における人 工放射性物質の深度分布を評価するために、土壌を層別に採取することが必要である。HASL のマニュアルでは、深さ0~2.5、2.5~5、5~30 cmの土壌採取、放射性物質が地中深く浸透 していると考えられる場合には深さ0~5、5~10、10~30 cmの土壌採取を提案している。ま た、福島第一原発事故から約4年半後の福島県内における放射性セシウムの90%深度(放 射性セシウムの沈着量の90%が含まれる地表面からの深度)は平均4.1 cm(図 E.2)であ ったという報告*4があることから、沈着直後から数年は地表に近い所(深さ10 cm 以内)を 細かく採取するのが有効と考えられる。

放射性物質は水平方向では不均質分布になる可能性があるが、鉛直分布については土質が 同等であれば大きな違いは生じないと考えられるため、同一地点で多数の土壌を採取する必 要はない。広範囲の地域における放射性物質の分布状況を調査する場合には、周辺環境及び 土質等を考慮して、採取地点の分布に偏りがないように幾つかの代表的な地点を選定し、平 均的な深度分布を評価する方が効率的である。なお、原子力災害時に土壌採取を実施する場 合には、作業員の被ばく低減を考慮することが重要である。

土壌を採取する方法としては、採土器等を用いてコアサンプルを採取する方法、又はスク レーパープレート等を用いて層別に採取する方法がある。採土器等によるコアサンプルの採 取は、スクレーパープレートによる採取に比べて時間をかけずに行うことができ、深度分布 を簡易的に評価する場合には有効である。採土器を用いて採取する方法については、放射能 測定法シリーズ No.16「環境試料採取法」を参照する。ここでは、採取深度を細かく調節で き、深度分布の精密な評価を行いたい場合に有効であるスクレーパープレートによる採取方 法を示す。

図 E.2 福島第一原発事故からの経過日数と放射性セシウムの 90%深度の関係*4

^{*4 「}平成 27 年度放射性物質測定調査委託費(東京電力株式会社福島第一原子力発電所事故に伴う 放射性物質の分布データの集約)事業成果報告書 土壌中の放射性セシウムの深度分布調査」 松 田規宏、斎藤公明(2016)

E.1.2.1 スクレーパープレートによる土壌採取

スクレーパープレートは、土壌を表層から鉛直方向に任意の間隔(最小5 mm 間隔)で削 り取って採取する器具(図 E.3 参照)であり、地面に固定する金属フレームと、フレーム内 の土壌を削り取りながら採取する金属プレートから構成される。金属プレートに任意の深さ で金属棒を固定することによって、採取する深さを調節する。層ごとの土壌を注意深く採取 することによって、クロス・コンタミネーションを僅かにすることができる。

図 E.3 スクレーパープレート

(1) 採取地点の選定

通常 in-situ 測定場所(4.1参照)の近くで、in-situ 測定場所とできる限り同一の地形条件の場所を採取地点に選定する。1か所での採取に数時間を要するため、in-situ 測定地点が多い場合に全地点で土壌採取を行うことは現実的に困難である。その場合、周辺環境及び土質等を考慮して、採取地点の分布に偏りがないように幾つかの代表的な地点を選定し、平均的な深度分布を評価する。なお、原子力災害時に土壌採取を実施する場合には、作業員の被ばく低減を考慮することが重要である。

(2) 採取層の決定

放射性物質が地表に沈着してからの経過時間を考慮して採取層を決定する。沈着直後で あれば放射性物質は表層付近に分布していると予想されることから、表層付近を細かく層 (5 mm 間隔)に分けて重点的に採取する。時間経過とともに放射性物質の移行が認められ る場合には、より深い層までの採取が必要になる。また、除染作業の実施等が確認された 場合には、適宜採取層を決定する必要がある。

- (3) 採取器具の準備
- ① スクレーパープレート
- ② 採取土壌用ビニール袋(採取層ごと)
- ③ バット
- ④ ハンマー、剪定ばさみ、移植ごて、ヘラ、ピンセット
- ⑤ 使い捨てゴム手袋
- ⑥ 採取器具の洗浄用純水(ウェットティッシュでもよい。)
- ⑦ ブルーシート(複数地点で採取する場合には、コンタミネーションを避けるため、使い捨てできる紙等を用いるとよい。)
- ⑧ 量り(現地で土壌重量を測定する場合のみ)
- ⑨ U8 容器(採取層ごと;現地で測定用試料を調製する場合のみ)
- ⑩ 雨除け・日除け用のテント又はパラソル(必要に応じて)
- (4) 採取手順
- ① ハンマー等を使用してフレームを土壌表面に固定する(図 E.4 参照)。その際、フレーム が土壌表面に密着して接地するように固定する。

図 E.4 フレームの固定

② 土壌表面に植物がある場合は、地表に出ている部分だけを剪定ばさみ等を用いて注意深く 取り除く(図 E.5 参照)。石がある場合は土壌に埋まっていないものだけを取り除く。こ れらの植物又は石等を放射能濃度の測定に供する場合は、土壌と分けて採取しておくとよ い。

図 E.5 植物の除去(左:除去前、右:除去後)

③ 採取したい土壌の深さになるように金属棒をねじでプレートに固定し、採取層を調節する (図 E.6 参照)。

図 E.6 プレートの調節

④ プレートをフレーム内で水平方向に移動させて土壌を削り取り、ビニール袋に入れる(図 E.7参照)。プレートを地面に対して斜めに傾けて採取すると、調節した深さよりも深く採 取してしまうことになるため、プレートは垂直に保ちながら採取するように注意する。採 取作業は土壌が削り取れなくなるまで行う(図 E.8 参照)。特にフレーム内の端及び角を きれいに採取しないと下層土壌採取時の上層の混入、又は土壌密度算出時の誤差の原因と なるので、移植ごて又はヘラ等を用いて注意深く採取する。

図 E.7 スクレーパープレートによる土壌採取

図 E.8 土壤採取後

⑤ 層内の土壌採取終了後、次の層の採取時に上層が混入することを防ぐため、土壌が付着したプレート等を純水で洗い、水気を拭き取る(図 E.9 参照)。現場で純水を用意できない場合は、ウェットティッシュ等で土壌を拭き取るとよい。また、採取に使用したゴム袋は捨てて新しいものに交換する。

図 E.9 採取器具の洗浄

- ⑥ ③~⑤の作業を採取する層まで繰り返す。
- ⑦ 全層の採取終了後、採取で生じた穴を周辺の土等を用いて埋め戻す(埋め戻し方法については事前に決めておくとよい。)。
- 以下の⑧~⑩は採取した土壌を実験室等に持ち帰ってから作業してもよい。
- ⑧ 採取した土壌の層ごとの全重量を測定する。フレーム内の面積と採取した土壌の層厚から 土壌の体積を求めることによって、層ごとの土壌密度を算出する。*5
- ⑨ 採取した土壌は、層ごとに湿土のままビニール袋等の容器の中で良く混合する。
- ⑩ 採取した土壌を層ごとに湿土のまま U8 容器に詰め、詰めた土壌の高さ及び正味重量を計 測し、放射能濃度測定用試料とする。
- (5) 採取時の留意点^{*6}
- ① 採取作業が進むにつれて、プレートで削った内壁が崩れることによって上層の土壌が落下 し混入することも起こり得る。その場合には注意して取り除き、下層土壌への上層土壌の コンタミネーションを避ける。内壁が崩れやすい場合は、霧吹き等で内壁を湿らせて保護 するとよい。
- ② 根は剪定ばさみ等で切って、その層の土壌に加える。
- ③ 複数の層にまたがって石が存在する場合には、最も多く含まれている層の土壌に加える。 どの層に含まれているか判断がつかない場合は上層に加える(通常、上層の方が放射能濃 度が高いため。)。
- ④ 地面が凍結している場合は、溶けるのを待つか、ガスバーナー等を用いて溶かした後に採 取する。
- ⑤ 積雪がある場合は、土壌表面を乱さないように慎重に雪を取り除いてから採取する。
- (6) 記録
- ① 採取地点の位置情報
- ② 採取日時
- ③ 採取時の気象状況
- ④ 採取地点の地目
- ⑤ 採取土壌深度と重量
- ⑥ 写真
 - 採取地点全景・近景、採取状況、採取土壌の様子等
- ⑦ その他の特記事項

^{*5} 層ごとに土壌密度を算出せずに、採土器等を用いて採取した土壌の重量と採土器の体積から平 均的な土壌密度を算出することもできる。

^{*6 「}Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides」 F. Zapata (2010)

E.1.2.2 βの計算方法

(1) 放射性物質の土壌中における鉛直分布が指数関数で近似できる場合

放射性物質の土壌中における鉛直分布についての指数関数モデルは単なる近似であるが、 放射性物質の降下後ある程度の期間においてはかなり現実的なものである。指数関数で近似 できる場合、採取した土壌の測定結果から β を算出するには、放射能濃度(Bq/g)を重量深度 に対する指数関数で近似して式 (E.1)を基に β (g/cm²)を算出する。深度(cm)から重量深度 (g/cm²)に換算するには、その場の土壌密度^{*7}を用いる必要がある。

$$A(Z) = A_0 \cdot \exp(-\frac{Z}{\beta})$$
(E. 1)

A(Z): 重量深度 Z における放射能濃度 (Bq/g)

- Z : 重量深度(g/cm²)
 単位面積当たりの土壌の重量で表される地表面からの深度。
- A₀ : 地表面における放射能濃度(Bq/g)
- β : 重量緩衝深度 (g/cm²)
 放射性物質の土壤中における鉛直分布を表すパラメータ。
 浸透の程度を表し、数値が大きい程深く浸透していることを示す。
 パラメータとしては、βを土壌密度ρ(g/cm³)で除して
 RL(cm)、βの逆数をα/ρ(cm²/g)、RLの逆数をα(cm⁻¹)として表す場合もある。

現在市販されている解析ソフトの一部には放射性物質の土壌中における鉛直分布を表すパ ラメータとしてα(cm⁻¹)を入力するものがあるが、その場合には注意が必要^{*8}である。

<u>重量緩衝深度βの計算例</u>

①採取した土壌の記録及び測定結果から、表 E.3のような表を作成する。

重量深度の求め方

採取した土壌の各層の深度は、地表面(0 cm)から土壌を採取した層の中間までの深 度とし、土壌重量は、地表面から直上層までの土壌重量及び当該層の土壌重量の半分の 重量の総量とする。また、土壌を採取した面積には、土壌採取で使用した採土器、又は スクレーパープレートのフレーム内の面積を用いる。土壌重量を土壌採取面積で除する

^{*7} 土壌密度として一般的に 1.6 g/cm³が用いられることがあるが、土壌を採取して β を求める際に はその場の土壌密度を用いる必要がある。

^{*8} 放射性物質の土壌中における鉛直分布を表す際、その場の土壌密度を考慮する必要があるため、 パラメータとしては β (g/cm²)、又は α/ρ (cm²/g)を用いるべきである。しかし現在市販されてい る解析ソフトの一部には α (cm⁻¹)を入力するものがある。この場合には、実際の(見かけ上の) α ではなく、土壌を採取して求めた α/ρ (cm²/g)に解析ソフトが仮定している土壌密度(例; 1.6g/cm³)を乗じて、便宜上の α を求めてから解析を行う必要がある。
採取層 (cm)	深度 (cm)	採取層における 土壌重量(g)	深度までの 土壌重量(g)	採取面積 (cm ²)	重量深度 (g/cm²)	セシウム 137 放射能濃度 (Bq/g)
0.0~0.5	0.25	47.4	23.7	450	0.053	1.003
0.5~1.0	0.75	154.2	124.5	450	0.277	0.856
1.0~1.5	1.25	131.5	267.4	450	0.594	0.711
1.5~2.0	1.75	259.2	462.7	450	1.028	0.523
2.0~3.0	2.50	538.5	861.6	450	1.915	0.195
3.0~4.0	3.50	479.1	1370.4	450	3.045	0.065
4.0~5.0	4.50	560.9	1890.4	450	4.201	0.028
5.0~8.0	6.50	1718.2	3029.9	450	6.733	0.009

表 E.3 β算出のための表作成例

土壌密度の求め方

表 E.3 の重量深度を深度で除することによって、地表面(0 cm)から深度までの土壌 密度を算出する。

採取層における土壌密度を求める場合は、採取層における土壌重量を土壌体積(採取 層の厚さ×採取面積)で除することによって算出する。

②βの算出

重量深度 Z を X 軸、セシウム 137 放射能濃度 A(Z)を Y 軸としてグラフを作成する。得られ たプロットに対して指数関数で近似して、近似式を求める(図 E.10)。

近似式の係数から β を算出する。図 E. 10 において、式(E. 1)における $-Z/\beta = -0.753 Z$ となるので、 $\beta = 1.33$ と計算することができる。

(2) 放射性物質の土壌中における鉛直分布が双曲線正割関数で近似できる場合

時間の経過とともに放射性物質の移動及び拡散によってある深さにピークをもつような分 布(図 E. 11)が観測される。

(双曲線正割関数で近似できる場合)

このような深度分布に対しては、双曲線正割関数に基づく近似式(E.2)を用いてβを算出 することができる^{*9*10}。

$$A(Z) = A_0 \cosh(Z_0 / \beta) \sec h \{-(Z - Z_0) / \beta\}$$
 (E. 2)
* sec h(x) = 1/cosh(x)、 cosh(x) = {exp(x) + exp(-x)}/2
Z_0 : 放射能濃度が最大となる重量深度(g/cm²)

A₀、Z₀及びβは深度分布を基に、反復法アルゴリズムを利用した最小二乗法によって算出 する。式(E.2)は、土壌の深部において式(E.1)と同じ関数形となる特徴を有している。

指数関数的な深度分布の場合は、式(E. 1)が2 パラメータ (A₀ 及び β)で構成されており、 そのうちの重量緩衝深度 β を与えることで深度分布の形状を特定することができるため、insitu 測定によって、土壌に沈着した放射性セシウムの沈着量 (Bq/cm²)を定量することができ る。しかし、ある深さに放射能濃度のピークをもつ深度分布の場合には、式(E. 2)が3 パラメ ータ (A₀、 Z₀ 及び β) で構成されているため、 β を与えるだけでは深度分布の形状を特定す ることができない。したがって、このような深度分布については、指数関数相当の緩衝深度 (以下「実効的な重量緩衝深度 β_{eff} 」という。)を評価しておくことが解析上便利である。そ のために、式(E. 2)で解析した深度分布の沈着量と線量率の関係が指数関数的な深度分布のそ れと同等になるよう斎藤ら^{*11}の換算係数を用いて、線量率を算出するための式(E. 3)と沈着量 を算出するための式(E. 4)を同時に満足する実効的な重量緩衝深度 β_{eff} を求めることができ る^{*10}。

$$\int_{0}^{\infty} A_{0,eff} \exp(-Z/\beta_{eff}) I_{\gamma} C(Z) dZ = \int_{0}^{\infty} A_{0} \cosh(Z_{0}/\beta) \sec h \{-(Z-Z_{0})/\beta\} I_{\gamma} C(Z) dZ$$

(E. 3)

$$\beta_{eff}A_{0,eff} = \beta A_{Z_0} \Big[(\pi/2) - \tan^{-1} \{ -\sinh(Z_0/\beta) \} \Big] \quad (E. 4)$$

$$A_{0,eff} : 実効的な (仮の) 地表面における放射能濃度 (Bq/g)$$

$$I_{\gamma} : 放射性核種が崩壊したときのガンマ線の放出率$$

$$C(Z) : 斎藤らの換算係数^{*11}$$

$$A_{Z0} : 放射能濃度が最大となる重量深度における放射能濃度 (Bq/g)$$

$$\beta_{eff} : 実効的な重量緩衝深度 (g/cm2)$$

^{*9 「}Depth profiles of radioactive cesium in soil using a scraper plate over a wide area surrounding the Fukushima Dai-ichi Nuclear Power Plant」 N. Matsuda, S. Mikami, S. Shimoura, J. Takahashi, M. Nakano, K. Shimada, K. Uno, S. Hagiwara, K. Saito : Journal of Environmental Radioactivity 139, 427-434 (2015)

^{*10「}平成 27 年度放射性物質測定調査委託費(東京電力株式会社福島第一原子力発電所事故に伴う 放射性物質の分布データの集約)事業成果報告書 土壌中の放射性セシウムの深度分布調査」 松 田規宏、斎藤公明(2016)

^{*11} K. Saito, P. JACOB, Fundamental data on environmental gamma-ray fields in the air due to source in the ground, JAERI-Data/Code 98-001 (1998)

式(E.1)のように放射能濃度が重量深度に対して指数関数的に減少する深度分布の場合は、 式(E.3)の右辺が左辺と同じ数式になるため、式(E.1)で得られた重量緩衝深度は、そのまま 実効的な重量緩衝深度となる。

指数関数モデルにおける実効的な重量緩衝深度 β_{eff} を用いることで、地上での測定結果を 土壌中線源に関連付けることができる。また、地表の粗さの影響についても、実効的な重量 緩衝深度 β_{eff} で対応することができる。

採取した土壌から算出した各地点のβを用いて平均値を算出するためには、算術平均値を 用いる場合と幾何平均値を用いる場合がある。βの値について作成した頻度分布が正規分布 に近い形の場合は算術平均値を、対数正規分布に近い形の場合は幾何平均値を平均的なβと することが望ましい。ただし、除染等で人の手が加えられたことによって、鉛直分布が不連 続若しくは不自然である地点のβは除外し、平均値の計算に含めない。 E.1.3 同一核種から放出されるエネルギーの異なる y 線を利用する方法

同一核種がエネルギーの異なる y 線を放出している場合には、それらのフルエンス率の比 から β を推定することができる。セシウム 137 の 662 keV (y 線) と 32 keV (X線) のフル エンス率の比 (32 keV/662 keV) の β による変化を図 E. 12 に示す。32 keV (X線) と 662 keV (y 線)の土壌での減弱の差が現れており、これを利用して β を推定することができる。こ の方法を適用するためには 32 keV を測定するため低エネルギーまで測定可能な n 型の Ge 半 導体検出器を用いる必要がある。

この方法は地面の粗さの影響も低減できるため有効である。ただし、事故後の1か月は短 半減期核種からの放射線が32keVの領域の測定を妨害するため適用は困難である。また、長 期間経過の場合にもセシウムが土壌中に深く浸透すると32keVのX線が検出できなくなるの で適用は困難である。

ランタン140又はセシウム134も適用可能であるが、セシウム137ほど有効ではない。

図 E.12 同一核種から放出されるエネルギーの異なるγ線のフルエンス率の比と 放射性物質の土壌中における鉛直分布(β)との関係 (ICRU Rep.53 から引用)

解説 E.2 解析結果への影響

図 E. 13 はある場所で測定した一つのスペクトルについて、放射性物質の土壌中における鉛 直分布を表すパラメータ β を変えて、線量率及び放射能濃度(単位面積当たりの放射能; Bq/cm²)を解析した結果である。線量率は β に大きく依存しないが、放射能濃度は β に大き く依存する。したがって、放射能濃度を算出する際には、 β の把握が測定の信頼性に関わる 最も大きな問題である。大気圏内核実験由来のセシウム 137 を評価するため、現在 β の値と して 4.8 g/cm² (α :0.33 cm⁻¹) *¹²が一般的に利用されているが、この値をそのまま事故直後 の地表面分布に適用してしまうと放射能濃度を約3倍に過大評価することになる。

また、同一核種からエネルギーの異なる複数の γ 線が放出される場合において、エネルギーによって放射能濃度の解析結果に差異が認められる場合には、放射性物質の土壌中における鉛直分布の仮定等に問題のある可能性がある。

^{*12 「}発電用軽水型原子炉施設の安全審査における一般公衆の線量評価について」 原子力安全委員会(平成13年)

図 E.13 鉛直分布を表すパラメータβの解析結果への影響

ある測定スペクトルに対してセシウム 137 (¹³⁷Cs) を評 価する際に β の値を 0 から 20 まで変化させて解析した結 果で、地表面分布 (β =0) として解析した結果に対する相 対値である。

βを大きくする程、放射能濃度の解析結果も増加する。 これは、βが大きいということは、放射性物質が地中深く に浸透したことを意味し、測定したピーク計数率(ここで は一定の値)を小さくなった効率(N_f/A_a)で除することで、 大きな放射能濃度が算出されるためである。

線量率が β に大きく依存しないのは、放射性物質が深く 浸透しても、線量率のための効率(N_f/I)が大きく変化し ないためである。 解説 F 解析条件と実際の測定条件が異なった場合の影響

解説 F.1 周辺地形の広がり

in-situ 測定で放射能濃度を算出する際に必要な係数(式 5.4 の ϕ /A、付表-1 及び表 5.4 の値)は、建物又は車両等の γ 線を減衰させるような障害物が周囲になく、無限に開かれた地形(無限平面)を仮定しての計算値である。しかし、実際の測定では完全な無限平面地形はあり得ないため、無限平面を仮定して放射能濃度を解析すると過小評価になってしまう。

周囲の広がりによる計測値への影響を、放射性物質の土壌中における鉛直分布(β)別 に、図 F.1~図 F.6 に示す。グラフ中の値は、周囲の広がりを変えてシミュレーション計 算^{*1 *2}した効率(ピーク計数率/放射能濃度)で、半径 150 m 開けている場合(無限平面と 見なせる)の値に対する相対値である。このグラフを参考に過小評価の程度を判断するこ とができる。

過小評価の許容範囲を-20%とすると、地表面近くに分布している状況(β =0.1g/cm² 図 F.1) でセシウム 137 (およそ 600 keV) を測定する場合には半径 25 m 以上周囲が開けて いる必要がある。 β =4.8 g/cm² (図 F.5) では半径 10 m、土壌中均質分布では半径 5 m 周 囲が開けている必要がある。

+分に開放された場所の確保が困難な場合には、図 F.1~図 F.6 を参考に測定結果を補 正することができる。ただし、補正に伴う不確かさを小さくするため、地表面近くに分布 している状況等では最低でも10 m 程度は開けていることが望ましい。

これらの結果は、シミュレーション計算*1*2を基にしており、Ge 半導体検出器としては、 p型の比較的方向依存性の少ない検出器について計算した結果である。地表面近くに分布 している場合(β=0.1 g/cm²)について、一般的な p型検出器と低エネルギーまで測定可 能な n型検出器について計算した結果を図 F.7 及び図 F.8 に示す。周囲の広がりによる計 測値への影響において、検出器の違いによる差は大きくない。なお、それぞれの検出器の 方向依存性については解説 G を参照のこと。

また、周囲のどの範囲からどの程度の γ 線が in-situ 測定に寄与しているかを、図 F.9 ~図 F.11 に示す。なお、図 F.9 は放射性物質の土壌中における鉛直分布(β)による違いを示し、図 F.10 及び F.11 は γ 線エネルギーによる違いを示している。

^{*1} ピーク効率シミュレーションソフトウェア(計算コード: MCNP モンテカルロコード*2)を使用 した。

^{*2} Briesmeister, J.F., 「MCNP-A general Monte Carlo N particle Transport Code Version 4C」, Los Alamos National Laboratory Report LA-13709-M (2000)

図 F.2 周囲の広がりによる計測値への影響 (検出器:p型 β: 1.0 g/cm²)

図 F.4 周囲の広がりによる計測値への影響 (検出器:p型 β: 10 g/cm²)

図 F.5 周囲の広がりによる計測値への影響 (検出器:p型 β: 4.8 g/cm²)

図 F.6 周囲の広がりによる計測値への影響 (検出器:p型 均質分布)

図 F.7 周囲の広がりによる計測値への影響 (β: 0.1 g/cm²) (検出器:p型、L/D; 0.9、不感層; 1 mm、相対効率; 40 %)

図 F.8 周囲の広がりによる計測値への影響 (β: 0.1 g/cm²) (検出器:n型、L/D; 1.0、不感層; 0.1 μm、相対効率; 25 %)

図 F.9 in-situ 測定における周囲からの寄与割合(y線エネルギー600 keV)

図 F.10 in-situ 測定における周囲からの寄与割合 (β: 0.1 g/cm²)

図 F.11 in-situ 測定における周囲からの寄与割合(β: 4.8 g/cm²)

解説 F.2 検出器の設置高さ

in-situ 測定法では、検出器を地表面から1mの高さに設置して測定したという前提で 解析が行われる。通常、検出器は1mの高さに設置されるため補正の必要はないが、周辺 地形の状況等によって、やむを得ず異なる高さに検出器を設置しなければならないことも 考えられることから、検出器設置高さの計測値への影響を以下に記載した。

土壌中における放射性物質の鉛直分布(β)別に、in-situ 測定における効率(ピーク 計数率/放射能濃度)について、検出器設置高さを変えてシミュレーション計算^{*3 *4}した結 果を図 F.12~図 F.14 に示す。グラフ中の値は、高さ1 m での値に対する相対値である。

検出器設置高さが高いほど、効率は低くなる。したがって、やむを得ず1mよりも高い 位置に検出器を設置した場合、又は崖等があって周辺地形が下がっている場合には、過小 評価することになるので注意が必要である。

放射性物質が地表面近くに分布している場合(図 F.12、 β =0.1 g/cm²)には、検出器の 設置高さによる影響が大きくなるため特に注意が必要である。

図 F.12 検出器設置高さによる計測値への影響 (β: 0.1 g/cm²)

^{*&}lt;sup>3</sup> ピーク効率シミュレーションソフトウェア(計算コード:MCNP モンテカルロコード^{*4})を使用 した。

^{*4} Briesmeister, J.F., 「MCNP-A general Monte Carlo N particle Transport Code Version 4C」, Los Alamos National Laboratory Report LA-13709-M (2000)

図 F.13 検出器設置高さによる計測値への影響 (β: 4.8 g/cm²)

図 F.14 検出器設置高さによる計測値への影響 (均質分布)

解説 F.3 土壤中水分

土壌中水分の影響は、土壌中における放射性物質の鉛直分布(解説 E)の影響に含まれ るため、特別な場合を除いて補正の必要はない。しかし、同一地点を継続的に測定するよ うな場合には、異なる時期での in-situ 測定結果を比較することが考えられ、晴天時と降 雨直後の測定結果を比較するような場合も想定されることから、土壌中水分の計測値への 影響を以下に記載した。

土壌中における放射性物質の鉛直分布(β)別に、in-situ 測定における効率(ピーク 計数率/放射能濃度)について土壌中水分を変えてシミュレーション計算^{*5 *6}した結果を図 F.15~図 F.18 に示す。グラフ中の値は、水分が10%の場合の値に対する相対値である。

放射性物質が地表面近くに分布している場合(β=0.1 g/cm²)には、当然、土壌中水分の影響は小さい(図 F.15)。放射性物質が土壌にある程度浸透した場合(β=4.8 g/cm²)には、土壌中の水分が大きいほど水による遮へいによって、効率が低くなる(図 F.16)。 すなわち計測値が低くなる。放射性物質の沈着直後には土壌中水分の影響は無視できるが、 沈着後時間が経過し放射性物質が土壌中に浸透した場合においては、測定時の土壌中水分 によって異なる測定結果が得られるので注意が必要である。したがって、可能ならば測定 時の土壌中水分を測定し記録することが望ましい。

土壌中均質分布の放射性核種を解析する場合には、土壌中水分の影響はほとんど見られない(図 F.17)。これは、水の遮へいによる計数率の減少と、放射能濃度の水による希釈効 果が均衡し、効率(s⁻¹/(Bq/g 湿土))が大きく変化しないことを示している。

しかし、乾土当たりの放射能に対する効率(s⁻¹ / (Bq/g 乾土))では、放射能濃度の水 による希釈効果がないため、水分が大きいほど水の遮へいによる計数率の減少だけが生じ、 効率が土壌中水分によって変化する(図 F.18)。in-situ 測定で得られるのは、あくまで 実際の土壌(湿土)当たりの放射能の結果である。通常、実験室で測定される土壌中放射 能の値は乾土当たりで示されているので、その値と比較する場合には注意が必要である。

^{*&}lt;sup>5</sup> ピーク効率シミュレーションソフトウェア(計算コード:MCNP モンテカルロコード*⁶)を使用 した。

^{*6} Briesmeister, J.F., 「MCNP-A general Monte Carlo N particle Transport Code Version 4C」, Los Alamos National Laboratory Report LA-13709-M (2000)

図 F.15 土壌中水分による計測値への影響 (放射性物質が地表近くに分布している場合、β:0.1 g/cm²)

図 F.16 土壌中水分による計測値への影響 (放射性物質が土壌中に浸透した場合、β:4.8 g/cm²)

図 F.17 土壌中水分による計測値への影響 (湿土当たりの放射能を計測する場合、均質分布)

図 F.18 土壌中水分による計測値への影響 (乾土当たりの放射能を計測する場合、均質分布)

解説 G 検出器の方向特性(ピーク効率の角度依存性)

p型 Ge 半導体検出器及び n型 Ge 半導体検出器の方向特性の一例を図 G.1 及び図 G.2 に示 す。検出器は in-situ 測定では通常下向きにセットされる。真下方向を 0°とし、0°での効 率に対する各角度での効率の相対値を示した。なお、線源と検出器の距離を 1 m としてシミ ュレーション計算^{*1 *2} した結果である。 p型検出器は相対効率 40 %、直径 61 mm、長さ 56 mm、 不感層 1 mm、n型検出器は相対効率 25 %、直径 53 mm、長さ 53 mm、不感層 0.1 μ m である。

p型検出器では低エネルギー(50 及び 60 keV)において斜め方向から入射したγ線に対し て低い傾向が見られる。これは、斜め入射によって不感層の通過距離が長くなり、そのため の減衰によるものと考えられる。100 keV 以上のエネルギーにおいては方向依存性がほとん ど認められない。

n 型検出器では、不感層が非常に薄いため、低エネルギーで斜め方向から入射した場合に もピーク効率が低くなることはなく、逆に高くなる傾向が見られた。これは、低エネルギー ではピーク効率が、検出器の体積よりも断面積に依存するためと考えられる。全体的には大 きな方向依存性は認められなかった。

ここで示した検出器は、長さと直径の比(L/D)がほぼ1.0に近い検出器であるが、L/Dが 0.9~1.1の範囲から外れるような検出器及び低バックグラウンドのための特殊な検出器では 大きな方向依存性を示すことがあるので、そのような検出器を使用する場合には十分に方向 特性を把握しておく必要がある。

^{*1} ピーク効率シミュレーションソフトウェア(計算コード: MCNP モンテカルロコード)を使用し た。

^{*2} Briesmeister, J.F., 「MCNP-A general Monte Carlo N particle Transport Code Version 4C」, Los Alamos National Laboratory Report LA-13709-M (2000)

図 G.1 ピーク効率の角度依存性の例 (検出器:p型、L/D; 0.9、不感層; 1 mm、相対効率; 40 %)

図 G.2 ピーク効率の角度依存性の例 (検出器:n型、L/D; 1.0、不感層; 0.1 µm、相対効率; 25 %)

解説 H.1 地表に沈着した人工放射性物質

- 1. 目的 地表に沈着した人工放射性物質に対する in-situ 測定の妥当性を確認する。
- 2. 検討方法

実際の環境場において in-situ 測定及び採取した土壌の y 線スペクトル測定を実施し、 両者の結果を比較した。測定場所は、自然に存在する放射性物質の濃度が低く、人の手 が入っていない未造成地があるという理由によって富士山周辺を選定した。

(1) in-situ 測定

平たんで、樹木は別として周囲が 10 m 以上開けている場所で測定を行った。測定は地 上 1 m の高さに Ge 半導体検出器を設置して 1 時間スペクトルを収集し、HASL 方式で解析 を行い、土壌中のセシウム 137 放射能濃度及び測定場所における γ 線量率を算出した。 使用した検出器の仕様を表 H.1 に示した。

(2) 土壌サンプリング及び測定

測定地点近傍において 5 cm φ の採土器を用い、深さ 30 cm までの土壌を 5 cm ごとの 6 層に分けて採取した。採取した土壌は乾燥せず、大きな石等を取り除いた後に測定容器 (U-8)に詰め、測定室の Ge 半導体検出器で約 70000 秒測定し、得られた γ 線スペクト ルからセシウム 137 の放射能濃度を求めた。

検出器	相対効率 (%)	結晶の 直径(D) (mm)	結晶の 長さ(L) (mm)	(L/D)	エンド キャップ (mm)	不感層	エンドキャップ と結晶の距離 (mm)
А	25	53	53	1.00	0.5 (A1)	0.1 μ m	5.0
В	25	54.6	54.7	1.00	1.27(A1)	0.7 mm	3.0

表 H.1 in-situ 測定に用いた Ge 半導体検出器の仕様

3. 結果及び考察

in-situ 測定及びサンプリングした土壌から得られたセシウム 137 の放射能濃度を表 H.2に示す。

in-situ 測定結果から放射能濃度を算出する際には放射性物質の土壌中における鉛直分 布が必要であるが、ここでは一般的に用いられている β =4.8 g/cm² と、それぞれの測 定地点における実際の値の両方を用いて解析を行った。

in-s 鉛直 測定場所 地点A (富士宮市	in-situ解析に用いた 鉛直分布パラメータ	¹³⁷ Cs 0	放射能濃度	(kBq/m^2)	供卖	
	eta (g/cm ²)	in-situ (検出器 A)	in-situ (検出器 B)	サンプリング土壌	τς, μι	
地点A (富士宮市 人穴地区)	4.8	1.6	1.6	1 7	腐葉土	
	8.15 ¹⁾	—	2.1	1. /		
地点B	4.8	2	2	4 0		
(富士山スカイ ライン)	15.4 ²⁾	—	4.2	4.0		
地点B ^{(富士山スカイ} ライン)	15. 4 ²⁾		4.2	4.0		

表H.2 富士山での放射能濃度測定結果

1)2) 採取した土壌から得られた値

β=4.8 g/cm²を用いて解析した結果について、in-situ 法とサンプリング土壌の測定結 果は、地点 A についてはほぼ一致したが、地点 B については約 2 倍の違いが見られた。 これは、解析時に仮定した放射性物質の土壌中の鉛直分布が実際の分布と異なっている ことに起因すると考えられる。

それぞれの地点で採取して得られたセシウム 137 の土壌中の鉛直分布(図 H. 1、図 H. 2 参照)及び各地点の土壌の密度から β を求めた。^{*1} これらの β (表 H. 2 1) 2))を用い て in-situ 測定結果を解析した結果は、採取した土壌から得られた¹³⁷Csの放射能濃度に 近い値となった。

各地点で測定された in-situ スペクトルを図 H.3 及び図 H.4 に示した。

^{*1} 土壌の採取深度 Z (cm)と、深度 Z における ¹³⁷Cs の放射能濃度 A(Z) (Bq/kg 湿土) を、指数関数 A(Z)=exp(- α Z) に適合させて α (cm⁻¹)を求め、 $\beta = \rho / \alpha$ (ρ :採取土壌の密度) によって β を 求めた。

(地点 A)

図 H.3 Ge 半導体検出器を用いた in-situ 測定スペクトル (地点 A)

図 H.4 Ge 半導体検出器を用いた in-situ 測定スペクトル (地点 B)

解説 H.2 自然に存在する放射性物質

1. 目的

土壌中の、自然に存在する放射性物質に対する in-situ 測定の妥当性を確認する。

2. 検討方法

実際の環境場において、in-situ 測定及び、採取した土壌のγ線スペクトル測定を実施 し、両者の結果を比較した。

(1) in-situ 測定

周囲が 10 m以上開けている場所を選定し、地上 1 mの高さに Ge 半導体検出器を設置 して 1 時間測定を行った。得られたスペクトルを HASL 方式で解析し、土壌中の自然に存 在する放射性物質の放射能濃度を算出した。

(2) 土壌採取及び測定

測定地点周辺において採土器を用いて土壌を採取した。採取した土壌は乾燥せず、大きな石等を取り除いた後に測定容器(U-8)に詰め、測定室のGe半導体検出器で約70000 秒測定し、得られたy線スペクトルから放射能濃度を求めた。

3. 結果及び考察

in-situ 測定結果と、各測定地点で採取された土壌の測定結果を表 H.3 に示した。自然 に存在する放射性核種の測定結果について、in-situ 測定から得られた結果と採取した土 壌の結果はよく一致していた。なお、in-situ 測定結果の解析の際には、土壌中の分布は 均質であると仮定した。

in-situ 測定の結果得られた値と、各地点で採取された土壌の測定結果の関係を図 H.5 に示す。in-situ 測定結果とサンプリング土壌の結果には良い相関が見られた。

in-situの測定風景の一例を図H.6に、測定されたスペクトルの一例を図H.7に示した。

注結果と採取した土壌のγ線スペクトロメトリーの結果との比較 オード

単位: Bq/kg湿土

定結
\equiv
Ē
~~
-
•
70
<u>ب</u>
•–

表H. 3

	(V€	10	ى ∞	12	∞	8 1	11		9	۲ ۲	TT	2	9	12	∞	∞		(x	
K-40	(1460. 8ke	380 ±	370 ±	360 +	$370 \pm$	320 ± 360 ±	430 <u>-</u>		$470 \pm$	+ 017	410 -	$470 \pm$	$470 \pm$	$510 \pm$	$500 \pm$	$530 \pm$	490	-	200 ++	530
	40 K																			
	keV)	1.6	1.1 0 0	2.0	1.2	$\frac{1.4}{0}$	1		0.8	۲ ۲	Т. (1.0	0.8	1.8	1.1	1.1		,	1.1	
	11.1]	+1	+ +	+	+	+ +	·I		+	+	- -	+1	+1	+	+1	+		-	+1	
	с (9	17	19	202	20	21	22		22	C F	La	25	24	31	25	32	24	(28	29
	^{228}A																			
	keV)	0.7	0.6 6	0.9	0.6	0.9 x	0 0		0.5		0. 1	0.5	0.5	0.8	0.5	0.7		l c	0.5	
系列	38. 6	+	+ +	+	+	+ +	·		+1	+	- -	+1	+1	+1	+	+	~	-	+1	
Th	ъb (2	2^{ϵ}	500	1 01	22	25	11		26	ç	1	50	26	3	20	с. Г	23	0	53	2(
	${}^{212}F$																		_	
	keV)	0.47	0.32	0.58	0.34	0.44 0.53	· · ·		0.26	07	0. 40	0.31	0.26	0.50	0.31	0.3		0	0.33	
	83. 1	+	+ +	+	+1	+ +			+1	+	- -	+1	+1	+1	+1	+1	~	-	+1	
	[] (5	7.2	2.0		7. (6.]			7.5	e e	0	9.0	2.6	9.	9.8	Ξ	9.9	(о. Ч	
	2087		<u> </u>																	
	keV)	1.0	0.0	- 6	0. 9		1.1		0.	-	ר. די	0.0	0.0	1.0	0.7	0.7		0	0.	
	309. 3	+I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+ +	+	+ ~	+ +	- +		+ .0	+	- ·	+ 2	+1 .0	+1	+	+	8	-	+1	∞
	3i ((2;	57 C	1 Ö	5	0 C	2 01		1(F	Ĩ	, 	16	й	2	0	18	Ċ	5	100
系列	214	(~~~~		~	01							<u> </u>	_	~	~				
Û)keV)	1. (0.0		0.8		-		0.0	0	⊃.	0.0	0.0	1.0	0	0. 0		0	.0	
	352. (+	+ +	+ - 00	+ 2	+ +	- 0		+I	+	- -	+1	+1	+1	+	+	0	-	+1	2
	c) qc	21	0 0	1 01	3	0 N	1 1		1 1	÷	Ä	2	õ	0	3	Ň	1	0	2	-
1 1m11	²¹⁴]	. \							<u>_</u>										+	
核種		高式約	88	8 8	В	88	=		、武治	1	Ξ	ш	ш	Ш	ш	Ш		2 2 11	関係	
	地	う い い は	 √10 c √10 c 	~15c	~20c	~250			~ ^ ~ ~ -	ں بر	ວິ ດ)	$\sim 10c$	$\sim 15c$	$\sim 20c$	~25c	~30c			.) ?)	
	()	I イポット 武米		10)	15°	20) 25)	situ	\sim	がおく	たら		(10	10°	15°	20)	25)	situ	ŝ	がボン	situ
/	きょう / / / /	利司コ	~				in-	也点		П							in-	街 元(П,	in-
	- 44- >	-1 -1						-1-1										-+-1		

コンポジット: 測定地点から5m四方の4点で採取した土壌を混合した試料 コア試料: 測定地点直下で深度別に採取した試料 in-situ測定結果は、土壌中に均質に分布するとして解析した。

図 H.5 in-situ 測定結果と、各地点で採取された土壌の γ線スペクトロメトリーによる結果との比較

図H.6 in-situ 測定風景

図 H.7 Ge 半導体検出器を用いた in-situ 測定スペクトルの例

解説 I 相互比較測定

in-situ 測定における測定結果の信頼性向上のための精度管理の一環として、測定機器間の相互比較測定が有効である。原子力災害時等において in-situ 測定を急遽実施することも 想定されるため、日頃から定期的に機器の状態を確認しておくことも重要である。また、広 範囲における放射性物質の分布状況を調査するために、複数の測定機器で分担して測定を実 施する場合には、測定機器間の測定精度に大きな差がないことを事前に確認しておくことが 望ましい。

(1) 場所の選定

「4.1 測定場所の選定」参照。

(2) 周辺状況の確認

サーベイメータ等を用いて相互比較測定実施予定場所周辺(理想的には半径 30 m 程度の範囲)で線量率の分布の差が小さいことを確認する。

(3) 測定方法

測定方法として、以下の2通りの方法があげられる。

①なるべく狭い範囲(例えば同心円上)にお互いが遮へいとならないように機器を設置して同時に行う測定(図 I.1、図 I.2)

②同一地点で1機器ずつ順番に行う測定

測定場所における環境の状況が刻々と変化する可能性があるため、特に②の場合は速やか に測定作業を実施する必要がある。

また、in-situ測定結果の妥当性を確認するため、同一地点でサーベイメータによる線量 率測定を併行して実施するとよい。

(4) 結果の評価

検出された人工及び自然放射性核種それぞれについて比較を行う。測定地点間、又は環境の変化による差が大きい等の理由で補正する必要がある場合には、サーベイメータで測定した線量率で補正して比較すると、その影響を緩和できる場合がある(図 I.3)。

図 I.1 相互比較測定の様子(同時測定)*1

3m 6m 9m

図 I.2 相互比較測定(同時測定)の配置例^{*1}

(3 つの同心円内の小さな円はサーベイメータによる線量率測定地点を表し、その脇の数字 は地上高1mにおける線量率(µSv/h)の平均値とその標準偏差(n=5)を示す。A~Fの地 点にGe半導体検出器を設置して同時に測定し、相互比較測定を実施。)

 ^{*1 「}In Situ Gamma Spectrometry Intercomparison in Fukushima, Japan」S. Mikami, S. Sato, Y. Hoshide,
 R. Sakamoto, N. Okuda, K. Saito, Jpn. J. Health Phys., 50 (3), 182 ~ 188 (2015)

 図 I.3 セシウム 137 の相互比較測定結果例 *1
 (縦軸はサーベイメータで測定した線量率(µSv/h)とGe半導体検出器で測定した セシウム 137 の沈着量(Bq/m²)の比を表す。)

99

付 録

付録 1 放射性核種濃度と地上高 1m での γ線フルエンス率との関係
付表-1 放射性核種濃度と地上高1mでの γ 線フルエンス率との関係 単位 : $(cm^{-2} \cdot s^{-1}) / (Bq/cm^{2})$

エネルギー	放出比			;	放射性物	勿質の土	:壌中に	おける	鉛直分布	īを表す	パラメー	$-\beta$ β	(g •	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	0.	0	0.	1	0.	2	0.	3	0.	5	1.	0	2.	0
11.2	0.255	Pb-210	7.90	1E-02	3.13	1E-02	1.86	1E-02	1.32	1E-02	8.35	1E-03	4.34	1E-03	2.22	1E-03
12.7	0.081	Th-232	3.58	1E-02	1.52	1E-02	9.27	1E-03	6.67	1E-03	4.29	1E-03	2.26	1E-03	1.16	1E-03
12.7	0.089	Th-228	3.91	1E-02	1.65	1E-02	1.01	1E-02	7.27	1E-03	4.68	1E-03	2.46	1E-03	1.27	1E-03
13.4	0.079	U-236	4.10	1E-02	1.78	1E-02	1.10	1E-02	7.99	1E-03	5.18	1E-03	2.74	1E-03	1.42	1E-03
13.4	0.084	U-238	4.33	1E-02	1.88	1E-02	1.17	1E-02	8.43	1E-03	5.46	1E-03	2.89	1E-03	1.50	1E-03
13.4	0.094	U-234	4.85	1E-02	2.11	1E-02	1.31	1E-02	9.44	1E-03	6.12	1E-03	3.24	1E-03	1.68	1E-03
13.4	0.102	U-232	5.25	1E-02	2.29	1E-02	1.42	1E-02	1.02	1E-02	6.63	1E-03	3.51	1E-03	1.82	1E-03
13.7	0.094	Th-234	5.20	1E-02	2.29	1E-02	1.42	1E-02	1.03	1E-02	6.70	1E-03	3.56	1E-03	1.84	1E-03
13./	0.562	Np-237	3.12	1E-01	1.37	1E-01	8.54	1E-02	6.19	1E-02	4.02	1E-02	2.13	1E-02	1.10	1E-02
13./	0.776	Th=231	4.31	1E-01	1.89	1E-01	1.18	1E-01	8.54	1E-02	5.55	1E-02	2.94	1E-02	1.53	1E-02
14.1	0.040	Pu=239	2.30	1E-02	2 17	1E-02	1 26	1E-03	4.74	1E-03	5.09 6.41	1E-03	1.04	1E-03	0.01	1E-04
14.1	0.082	Pu-242	4.03 5.27	1E-02	2.17	1E-02	1.30	1E-02	1.06	1E-02	6.91	1E-03	3.68	1E-03	1.77	1E-03
14.1	0.000	Pu-238	6.04	1E-02	2.64	1E-02	1.40	1E-02	1.00	1E-02	7.92	1E-03	4 2 1	1E-03	2.18	1E-03
14.1	0 103	Pu-236	6 10	1F-02	2 71	1E-02	1 69	1E-02	1 23	1E-02	8 00	1E-03	4 2 6	1E-03	2 2 1	1E-03
14.4	0.365	Am-241	2.31	1E-01	1.04	1E-01	6.49	1E-02	4.72	1E-02	3.08	1E-02	1.64	1E-02	8.52	1E-03
14.4	0.575	U-237	3.64	1E-01	1.63	1E-01	1.02	1E-01	7.44	1E-02	4.85	1E-02	2.59	1E-02	1.34	1E-02
14.8	0.081	Cm-244	5.42	1E-02	2.45	1E-02	1.54	1E-02	1.12	1E-02	7.32	1E-03	3.91	1E-03	2.03	1E-03
14.8	0.085	Cm-242	5.72	1E-02	2.58	1E-02	1.62	1E-02	1.18	1E-02	7.72	1E-03	4.12	1E-03	2.14	1E-03
14.8	0.098	Am-242	6.60	1E-02	2.98	1E-02	1.87	1E-02	1.36	1E-02	8.91	1E-03	4.75	1E-03	2.47	1E-03
14.8	0.461	Cm-243	3.10	1E-01	1.40	1E-01	8.80	1E-02	6.41	1E-02	4.19	1E-02	2.23	1E-02	1.16	1E-02
14.8	0.471	Cm-245	3.17	1E-01	1.43	1E-01	9.00	1E-02	6.55	1E-02	4.28	1E-02	2.28	1E-02	1.19	1E-02
15.2	0.273	Am-242m	1.93	1E-01	8.84	1E-02	5.59	1E-02	4.09	1E-02	2.68	1E-02	1.44	1E-02	7.49	1E-03
15.5	0.161	Am-242	1.18	1E-01	5.50	1E-02	3.52	1E-02	2.59	1E-02	1.71	1E-02	9.25	1E-03	4.85	1E-03
10.5	0.183	Mo-93	1.48	1E-01	7.23	1E-02	4./4	1E-02	3.54	1E-02	2.38	1E-02	1.30	1E-02	0.92	1E-03
16.6	0.000	Mo-93	4.00	1E-02	2.39	1E-02	0.17	1E-02	6.86	1E-02	7.09	1E-03	4.34	1E-03	2.30	1E-03
18.6	0.000	Mo-93	2.00	1E-02	4 4 9	1E-02	3.05	1E-02	2.33	1E-02	1.59	1E-02	2.55	1E-02	4 79	1E-02
20.1	0.000	Rh-103m	1.96	1E-01	1.10	1E-01	7 32	1E-02	5.63	1E-02	3.89	1E-02	2 20	1E-02	1.19	1E-02
20.2	0.349	Rh-103m	3.73	1E-01	2.03	1E-01	1.40	1E-01	1.08	1E-01	7.51	1E-02	4.27	1E-02	2.32	1E-02
22.7	0.094	Rh-103m	1.11	1E-01	6.44	1E-02	4.66	1E-02	3.71	1E-02	2.67	1E-02	1.60	1E-02	9.05	1E-03
25.3	0.410	Sn-117m	5.25	1E-01	3.23	1E-01	2.41	1E-01	1.96	1E-01	1.45	1E-01	8.96	1E-02	5.17	1E-02
25.6	0.146	Th-231	1.89	1E-01	1.17	1E-01	8.78	1E-02	7.15	1E-02	5.30	1E-02	3.30	1E-02	1.90	1E-02
26.4	0.156	Sn-126	2.07	1E-01	1.30	1E-01	9.80	1E-02	8.01	1E-02	5.97	1E-02	3.74	1E-02	2.17	1E-02
27.2	0.103	Te-127m	1.41	1E-01	8.95	1E-02	6.82	1E-02	5.60	1E-02	4.19	1E-02	2.64	1E-02	1.54	1E-02
27.2	0.127	Te-129m	1.74	1E-01	1.10	1E-01	8.40	1E-02	6.90	1E-02	5.17	1E-02	3.26	1E-02	1.90	1E-02
27.2	0.327	le-125m	4.46	1E-01	2.83	1E-01	2.16	1E-01	1.//	1E-01	1.33	1E-01	8.37	1E-02	4.88	1E-02
27.0	0.193	Te-12/m	2.00	1E-01	1.09	1E-01	1.29	1E-01	1.00	1E-01	7.97	1E-02	5.03 6.10	1E-02	2.93	1E-02
27.5	0.237	Te=129m Te=125m	3.20 8.30	1E-01	2.00 5.36	1E-01	1.09	1E-01	2.26	1E-01	9.60	1E-02	1 50	1E-02	0.20	1E-02
27.8	0.156	Te-129	2 17	1E-01	1.39	1E-01	1.05	1E-01	8 76	1E-02	6.59	1E-02	4 17	1E-02	2 44	1E-02
29.4	0.152	Np-237	2.22	1E-01	1.45	1E-01	1.13	1E-01	9.35	1E-02	7.09	1E-02	4.53	1E-02	2.66	1E-02
29.5	0.185	I–129	2.69	1E-01	1.77	1E-01	1.37	1E-01	1.14	1E-01	8.64	1E-02	5.52	1E-02	3.25	1E-02
29.8	0.343	I-129	5.05	1E-01	3.33	1E-01	2.59	1E-01	2.15	1E-01	1.63	1E-01	1.05	1E-01	6.15	1E-02
30.6	0.092	Cs-134m	1.37	1E-01	9.12	1E-02	7.12	1E-02	5.94	1E-02	4.54	1E-02	2.93	1E-02	1.74	1E-02
31.0	0.067	Te-127m	9.98	1E-02	6.68	1E-02	5.23	1E-02	4.37	1E-02	3.35	1E-02	2.17	1E-02	1.30	1E-02
31.0	0.068	Te-129m	1.02	1E-01	6.81	1E-02	5.33	1E-02	4.46	1E-02	3.42	1E-02	2.22	1E-02	1.32	1E-02
31.0	0.170	Cs-134m	2.54	1E-01	1.70	1E-01	1.33	1E-01	1.11	1E-01	8.50	1E-02	5.51	1E-02	3.29	1E-02
31.0	0.212	Te-125m	3.16	1E-01	2.11	1E-01	1.65	1E-01	1.38	1E-01	1.06	1E-01	6.87	1E-02	4.11	1E-02
31.8	0.021	Ba-13/m	3.09	1E-02	2.09	1E-02	1.64	1E-02	1.38	1E-02	1.06	1E-02	6.95	1E-03	4.19	1E-03
32.2	0.038	Ba-13/m I_120	0./I 1 05	1E-02	3.87	1E-02	3.05	1E-02	2.30	1E-02	1.98	1E-02	1.30	1E-02	7.89	1E-03
35.0	0.122	1-129	7.60	1E-01	5.25	1E-01	1.01	1E-01	3.54	1E-02	2.86	1E-02	1 0 2	1E-02	2.73	1E-02
35.5	0.050	Te-125m	1.03	1E-01	7 16	1E-02	5 75	1E-02	4 90	1E-02	3.86	1E-02	2.62	1E-02	1.21	1E-02
38.7	0.223	Nd-147	3.51	1E-01	2.52	1E-01	2.06	1E-01	1.77	1E-01	1.42	1E-01	9.86	1E-02	6.33	1E-02
39.6	0.075	I-129	1.19	1E-01	8.59	1E-02	7.05	1E-02	6.08	1E-02	4.90	1E-02	3.42	1E-02	2.21	1E-02
43.0	0.118	Eu-155	1.90	1E-01	1.41	1E-01	1.18	1E-01	1.03	1E-01	8.38	1E-02	5.96	1E-02	3.92	1E-02
59.5	0.345	U-237	5.85	1E-01	4.69	1E-01	4.06	1E-01	3.65	1E-01	3.09	1E-01	2.32	1E-01	1.61	1E-01
59.5	0.359	Am-241	6.08	1E-01	4.88	1E-01	4.23	1E-01	3.80	1E-01	3.22	1E-01	2.41	1E-01	1.67	1E-01
64.3	0.096	Sn-126	1.63	1E-01	1.32	1E-01	1.15	1E-01	1.04	1E-01	8.86	1E-02	6.73	1E-02	4.70	1E-02
74.7	0.674	Am-243	1.15		9.49	1E-01	8.36	1E-01	7.62	1E-01	6.55	1E-01	5.06	1E-01	3.60	1E-01
74.8	0.104	Pb-212	1.78	1E-01	1.47	1E-01	1.30	1E-01	1.18	1E-01	1.02	1E-01	7.84	1E-02	5.58	1E-02
77.1	0.176	Pb-212	2.99	1E-01	2.48	1E-01	2.19	1E-01	2.00	1E-01	1.72	1E-01	1.33	1E-01	9.49	1E-02
84.2	0.067	[h-231	1.15	1E-01	9.55	1E-02	8.48	1E-02	7.74	1E-02	6.70	1E-02	5.21	1E-02	3.76	1E-02
86.5	0.123	Np-237	2.10	16-01	1./6	1E-01	1.56	1E-01	1.42	1E-01	1.23	1E-01	9.63	1E-02	6.96	1E-02

エネルギー	放出比			7	放射性物	物質の土	:壌中に	おける銀	沿直分布	īを表す	パラメー	-9 E	(g•	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	0.0)	0.	1	0.	2	0.	3	0.	5	1.	0	2.	0
86.5	0.309	Eu-155	5.29	1E-01	4.41	1E-01	3.92	1E-01	3.58	1E-01	3.10	1E-01	2.42	1E-01	1.75	1E-01
86.9	0.089	Sn-126	1.53	1E-01	1.27	1E-01	1.13	1E-01	1.03	1E-01	8.96	1E-02	6.99	1E-02	5.06	1E-02
87.6	0.370	Sn-126	6.33	1E-01	5.29	1E-01	4.70	1E-01	4.30	1E-01	3.73	1E-01	2.91	1E-01	2.11	1E-01
91.1	0.279	Nd-147	4.78	1E-01	4.00	1E-01	3.57	1E-01	3.26	1E-01	2.84	1E-01	2.22	1E-01	1.61	1E-01
97.1	0.166	U-237	2.85	1E-01	2.40	1E-01	2.14	1E-01	1.96	1E-01	1.71	1E-01	1.35	1E-01	9.86	1E-02
98.4	0.15/	Pa-233	2./1	1E-01	2.28	1E-01	2.04	1E-01	1.8/	1E-01	1.63	1E-01	1.29	1E-01	9.42	1E-02
99.6	0.147	Cm-243	2.53	1E-01	2.13	1E-01	1.91	1E-01	1./5	1E-01	1.53	1E-01	1.21	1E-01	8.80	1E-02
99.0	0.137	Np=239 Cm=245	2.70	1E-01	2.27	1E-01	2.04	1E-01	2 10	1E-01	1.03	1E-01	1.29	1E-01	9.44 1 1 1	1E-02
101 1	0.100	11-237	4 59	1E-01	3.87	1E-01	3 47	1E-01	3.18	1E-01	2.78	1E-01	2 1 9	1E-01	1.11	1E-01
103.8	0.059	Am-242	1.02	1E-01	8 60	1E-02	7.71	1E-02	7.07	1E-02	6 18	1E-02	4 89	1E-02	3 59	1E-02
103.8	0.236	Cm-243	4.06	1E-01	3.43	1E-01	3.08	1E-01	2.82	1E-01	2.47	1E-01	1.95	1E-01	1.43	1E-01
103.8	0.251	Np-239	4.33	1E-01	3.65	1E-01	3.28	1E-01	3.00	1E-01	2.63	1E-01	2.08	1E-01	1.53	1E-01
103.8	0.295	Cm-245	5.09	1E-01	4.30	1E-01	3.85	1E-01	3.53	1E-01	3.09	1E-01	2.44	1E-01	1.80	1E-01
105.3	0.206	Eu-155	3.55	1E-01	3.00	1E-01	2.69	1E-01	2.47	1E-01	2.16	1E-01	1.71	1E-01	1.26	1E-01
106.1	0.272	Np-239	4.70	1E-01	3.97	1E-01	3.56	1E-01	3.27	1E-01	2.86	1E-01	2.26	1E-01	1.66	1E-01
117.3	0.066	Cm-245	1.14	1E-01	9.66	1E-02	8.68	1E-02	7.98	1E-02	7.00	1E-02	5.55	1E-02	4.10	1E-02
121.1	0.173	Se-75	3.01	1E-01	2.56	1E-01	2.30	1E-01	2.12	1E-01	1.86	1E-01	1.48	1E-01	1.09	1E-01
122.1	0.855	Co-57	1.49		1.27		1.14		1.05		9.20	1E-01	7.30	1E-01	5.41	1E-01
127.5	0.141	Cs-134m	2.46	1E-01	2.09	1E-01	1.88	1E-01	1.74	1E-01	1.53	1E-01	1.21	1E-01	8.99	1E-02
133.0	0.419	Ht-181	1.35	1E-01	6.27	1E-01	5.64	1E-01	5.21	1E-01	4.58	1E-01	3.64	1E-01	2./1	1E-01
133.5	0.111	Ge-144	1.94	1E-01	1.00	1E-01	1.49	1E-01	1.38	1E-01	1.21	1E-01	9.65	1E-02	7.18	1E-02
130.0	0.390	Se=75	1.04	1E-01	1.60	1E-01	1.50	1E-01	1.30	1E-01	0.47	1E-01	0.10	1E-01	6.03	1E-01
140.5	0.100	$T_{c} - 99m$	1.57		1.00		1.44		1.55		9.83	1E-01	7.83	1E-01	5.84	1E-01
143.8	0.110	U-235	1.93	1F-01	1.64	1F-01	1.49	1E-01	1.38	1E-01	1.22	1E-01	9.70	1E-02	7.24	1E-02
145.4	0.484	Ce-141	8.55	1E-01	7.33	1E-01	6.61	1E-01	6.12	1E-01	5.39	1E-01	4.30	1E-01	3.21	1E-01
158.6	0.864	Sn-117m	1.54		1.32		1.19		1.10		9.74	1E-01	7.79	1E-01	5.84	1E-01
159.0	0.840	Te-123m	1.50		1.28		1.16		1.07		9.47	1E-01	7.58	1E-01	5.68	1E-01
162.6	0.062	Ba-140	1.11	1E-01	9.52	1E-02	8.57	1E-02	7.95	1E-02	7.02	1E-02	5.62	1E-02	4.22	1E-02
165.9	0.238	Ba-139	4.24	1E-01	3.65	1E-01	3.28	1E-01	3.05	1E-01	2.69	1E-01	2.16	1E-01	1.62	1E-01
174.9	0.095	Cm-245	1.71	1E-01	1.47	1E-01	1.32	1E-01	1.23	1E-01	1.08	1E-01	8.71	1E-02	6.55	1E-02
181.1	0.061	Mo-99	1.09	1E-01	9.40	1E-02	8.45	1E-02	7.84	1E-02	6.94	1E-02	5.59	1E-02	4.21	1E-02
185.7	0.572	U-235	1.03	4 - 00	8.90	1E-01	8.01	1E-01	7.43	1E-01	6.57	1E-01	5.31	1E-01	4.00	1E-01
186.0	0.033	Ra-226	5.92	1E-02	5.10	1E-02	4.59	1E-02	4.26	1E-02	3.//	1E-02	3.04	1E-02	2.29	1E-02
202.5	0.958	1-90m	1.75 0.17	1 =_02	1.31	1E-02	7.00	1E-02	6.50	1E-02	1.11	1E-02	9.02	1E-01	0.82	1E-01
203.3	0.030	U-235	3 95	1E-02	3.41	1E-02	3.06	1E-02	2.84	1E-02	2.52	1E-02	2 04	1E-02	1 54	1E-02
210.5	0.223	Te-134	4 08	1E-01	3.52	1E-01	3 17	1E-01	2.04	1E-01	2.62	1E-01	2.04	1E-01	1.60	1E-01
228.2	0.106	Cm-243	1.95	1E-01	1.68	1E-01	1.51	1E-01	1.41	1E-01	1.25	1E-01	1.01	1E-01	7.68	1E-02
228.2	0.113	Np-239	2.08	1E-01	1.80	1E-01	1.62	1E-01	1.50	1E-01	1.33	1E-01	1.08	1E-01	8.19	1E-02
228.2	0.882	Te-132	1.63		1.40		1.26		1.18		1.04		8.46	1E-01	6.41	1E-01
234.7	0.261	Nb-95m	4.82	1E-01	4.17	1E-01	3.75	1E-01	3.49	1E-01	3.10	1E-01	2.52	1E-01	1.91	1E-01
238.6	0.434	Pb-212	8.03	1E-01	6.95	1E-01	6.25	1E-01	5.82	1E-01	5.17	1E-01	4.20	1E-01	3.18	1E-01
241.0	0.040	Ra-224	7.36	1E-02	6.36	1E-02	5.73	1E-02	5.33	1E-02	4.74	1E-02	3.85	1E-02	2.91	1E-02
264.7	0.591	Se-75	1.11		9.58	1E-01	8.64	1E-01	8.05	1E-01	7.16	1E-01	5.82	1E-01	4.42	1E-01
266.9	0.068	Y-93	1.27	1E-01	1.10	1E-01	9.95	1E-02	9.27	1E-02	8.25	1E-02	6.71	1E-02	5.09	1E-02
2/5.2	0.068	Pm-151	1.27	1E-01	1.10	1E-01	9.92	1E-02	9.25	1E-02	8.24	1E-02	6.70	1E-02	5.09	1E-02
277.0	0.140	Cm-243	2.03	1E-01	2.28	1E-01	2.06	1E-01	1.92	1E-01	1./1	1E-01	1.39	1E-01	1.05	1E-01
2778.0	0.144	Np=239	2.71	1E-01	2.35	1E-01	2.12	1E-01	1.97	1E-01	1.70	1E-01	2.08	15-01	1.09	1E-01
270.0	0.203	Se-75	3.33 4 74	1E-01	4 1 1	1E-01	3.07	1E-01	3.46	1E-01	3.08	1E-01	2.00	1E-01	1.00	1E-01
285.9	0.001	Pm-149	1 84	1E-03	1.60	1E-03	1 44	1E-03	1.34	1E-03	1 20	1E-03	9.75	1E-04	7.41	1E-04
293.3	0.420	Ce-143	7.96	1E-01	6.91	1E-01	6.24	1E-01	5.82	1E-01	5.19	1E-01	4.22	1E-01	3.21	1E-01
300.1	0.066	Pa-233	1.26	1E-01	1.10	1E-01	9.89	1E-02	9.23	1E-02	8.23	1E-02	6.71	1E-02	5.10	1E-02
306.1	0.051	Rh-105	9.76	1E-02	8.47	1E-02	7.66	1E-02	7.14	1E-02	6.37	1E-02	5.19	1E-02	3.95	1E-02
312.0	0.386	Pa-233	7.36	1E-01	6.39	1E-01	5.78	1E-01	5.39	1E-01	4.81	1E-01	3.92	1E-01	2.99	1E-01
314.1	0.610	Sb-128	1.16		1.01		9.14	1E-01	8.52	1E-01	7.61	1E-01	6.20	1E-01	4.72	1E-01
318.9	0.192	Rh-105	3.67	1E-01	3.19	1E-01	2.88	1E-01	2.69	1E-01	2.40	1E-01	1.96	1E-01	1.49	1E-01
320.1	0.098	Cr-51	1.88	1E-01	1.63	1E-01	1.48	1E-01	1.38	1E-01	1.23	1E-01	1.00	1E-01	7.64	1E-02
330.9	0.780	Sb-130	1.50		1.30		1.18		1.10		9.79	1E-01	7.99	1E-01	6.10	1E-01
340.1	0.225	Pm-151	4.32	1E-01	3.76	1E-01	3.40	1E-01	3.17	1E-01	2.84	1E-01	2.31	1E-01	1.77	1E-01
340.5	0.422	Cs-136	8.11	1E-01	7.04	1E-01	6.38	1E-01	5.95	1E-01	5.31	1E-01	4.34	1E-01	3.32	1E-01
342.1	0.067	Ag-111	1.28	1E-01	1.12	1E-01	1.01	1E-01	9.43	1E-02	8.42	1E-02	6.87	1E-02	5.26	1E-02
344.3	0.266	Eu-192	5.11	1E-01	4.44	1E-01	4.03	1E-01	3./5	1E-01	3.35	1E-01	2.74	1E-01	2.09	1E-01

エネルギー	放出比				放射性物	物質の土	宝壌中に	おける	沿直分布	「を表す	パラメー	ータ β	(g •	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$		0.	0	0.	1	0.	2	0.	3	0.	5	1.	0	2.	0
345.9	0.120	Hf-181	2.31	1E-01	2.01	1E-01	1.82	1E-01	1.70	1E-01	1.52	1E-01	1.24	1E-01	9.46	1E-02
364.5	0.812	I-131	1.57		1.37		1.24		1.16		1.03		8.44	1E-01	6.47	1E-01
400.7	0.116	Se-75	2.26	1E-01	1.97	1E-01	1.79	1E-01	1.67	1E-01	1.49	1E-01	1.22	1E-01	9.40	1E-02
402.5	0.690	Cm-247	1.35		1.17		1.07		9.49	1E-01	8.91	1E-01	7.29	1E-01	5.62	1E-01
414.8	0.833	Sb-126	1.64		1.42		1.29		1.21		1.08		8.85	1E-01	6.83	1E-01
417.9	0.010	Te-127	1.95	1E-02	1.69	1E-02	1.54	1E-02	1.43	1E-02	1.29	1E-02	1.05	1E-02	8.13	1E-03
418.0	0.341	I-130	6./I	1E-01	5.84	1E-01	5.31	1E-01	4.95	1E-01	4.44	1E-01	3.63	1E-01	2.80	1E-01
427.9	0.294	5D-125	08.C	1E-01	0.00 2.10	1E-01	4.59	1E-01	4.28	1E-01	3.84	1E-01	3.14	1E-01	2.43	1E-01
433.1	0.100	7n-60m	3.00 1.00	15-01	3.19	15-01	2.90	15-01	1 20	15-01	2.43	15-01	1.99	15-01	7.04	1E-01
430.0	0.949	Zn=09m Te=129	1.00	1E-01	1.03	1E-01	1.49	1E-01	1.39	1E-01	9.71	1E-02	7.96	1E-02	6.18	1E-01
461.0	0.099	Te-134	1.96	1E-01	1.27	1E-01	1.10	1E-01	1.00	1E-01	1.30	1E-01	1 07	1E-01	8 2 9	1E-02
462.8	0.307	Cs-138	6.12	1E-01	5.32	1E-01	4.86	1E-01	4.52	1E-01	4.06	1E-01	3.33	1E-01	2.59	1E-01
463.4	0.105	Sb-125	2.08	1E-01	1.81	1E-01	1.65	1E-01	1.54	1E-01	1.38	1E-01	1.13	1E-01	8.79	1E-02
469.4	0.175	Ru-105	3.50	1E-01	3.04	1E-01	2.78	1E-01	2.59	1E-01	2.32	1E-01	1.91	1E-01	1.48	1E-01
473.0	0.247	Sb-127	4.94	1E-01	4.30	1E-01	3.92	1E-01	3.65	1E-01	3.28	1E-01	2.69	1E-01	2.09	1E-01
477.6	0.103	Be-7	2.07	1E-01	1.80	1E-01	1.64	1E-01	1.53	1E-01	1.37	1E-01	1.13	1E-01	8.77	1E-02
479.5	0.253	W-187	5.06	1E-01	4.40	1E-01	4.02	1E-01	3.74	1E-01	3.36	1E-01	2.76	1E-01	2.15	1E-01
479.5	0.900	Y-90m	1.80		1.57		1.43		1.33		1.20		9.81	1E-01	7.64	1E-01
482.0	0.830	Hf-181	1.66		1.45		1.32		1.23		1.10		9.06	1E-01	7.05	1E-01
487.0	0.459	La-140	9.19	1E-01	8.00	1E-01	7.31	1E-01	6.81	1E-01	6.12	1E-01	5.02	1E-01	3.91	1E-01
497.1	0.889	Ru-103	1.79		1.55		1.42		1.32		1.19		9.77	1E-01	7.62	1E-01
507.7	0.053	Zr-97	1.07	1E-01	9.30	1E-02	8.50	1E-02	7.92	1E-02	7.12	1E-02	5.85	1E-02	4.56	1E-02
511.0	0.301	Co-58	6.06	1E-01	5.28	1E-01	4.83	1E-01	4.50	1E-01	4.05	1E-01	3.32	1E-01	2.59	1E-01
511.0	1.810	Na-22	3.64	15 01	3.17	15 01	2.90	15 01	2.70	15 01	2.43	15 01	2.00	15 01	1.56	15 01
511.9	0.207	Rh-100	4.17	1E-01	3.03	1E-01	3.32	1E-01	3.09	1E-01	2.78	1E-01	2.28	1E-01	1.78	1E-01
520.0	0.450	30-120 I-133	9.07	15-01	1.91	15-01	1 20	15-01	1 20	15-01	0.07	15-01	4.99	1E-01	3.09 7.49	1E-01
523.5	0.000	Nd-147	2.64	1E-01	2 30	1E-01	2 1 1	1E-01	1.25	1E-01	1.10	1E-01	1 4 5	1E-01	1 1 3	1E-01
536.1	0.990	I-130	2.04		1.74		1.60		1 49		1.34		1.10		8 60	1E-01
537.3	0.244	Ba-140	4.92	1E-01	4.30	1E-01	3.93	1E-01	3.66	1E-01	3.30	1E-01	2.71	1E-01	2.12	1E-01
544.7	0.179	Sb-129	3.62	1E-01	3.16	1E-01	2.89	1E-01	2.70	1E-01	2.43	1E-01	2.00	1E-01	1.56	1E-01
550.3	0.220	Pm-148	4.45	1E-01	3.88	1E-01	3.55	1E-01	3.31	1E-01	2.98	1E-01	2.45	1E-01	1.92	1E-01
550.3	0.944	Pm-148m	1.91		1.67		1.53		1.42		1.28		1.05		8.23	1E-01
551.5	0.059	W-187	1.19	1E-01	1.04	1E-01	9.52	1E-02	8.87	1E-02	7.99	1E-02	6.57	1E-02	5.14	1E-02
555.6	0.949	Y-91m	1.92		1.68		1.53		1.43		1.29		1.06		8.29	1E-01
566.0	0.183	Te-134	3.70	1E-01	3.23	1E-01	2.96	1E-01	2.76	1E-01	2.49	1E-01	2.05	1E-01	1.60	1E-01
569.3	0.150	Cs-134	3.04	1E-01	2.66	1E-01	2.43	1E-01	2.27	1E-01	2.04	1E-01	1.68	1E-01	1.32	1E-01
600.6	0.178	Sb-125	3.62	1E-01	3.17	1E-01	2.90	1E-01	2.70	1E-01	2.44	1E-01	2.01	1E-01	1.58	1E-01
602.7	0.979	Sb-124	1.99		1.74		1.60		1.49		1.34		1.11		8.69	1E-01
604.6	0.975	Cs-134	1.99	15 01	1./4	15 00	1.59	1 - 00	1.48	15 00	1.34	1	1.10	15 00	8.66	1E-01
610.0	0.050	SD-125	1.02	1E-01	8.95	1E-02	8.20	1E-02	7.65	1E-02	0.89	1E-02	5.69	1E-02	4.40	1E-02
618.4	0.030	Ru-103 W-197	1.14	1E-01	9.99	1E-02	9.15	1E-02	0.04	1E-02	1.09	1E-02	0.00	1E-02	4.90 6.49	1E-02
621.8	0.073	Rh-106	2 00	1E-01	1.50	1E-01	1.13	1E-01	1.11	1E-01	1.00	1E-01	1 1 2	1E-01	0.40 8.76	1E-02
628.7	0.310	Sb-128	6.33	1E-01	5 55	1E-01	5.08	1E-01	4 74	1E-01	4.28	1E-01	3 53	1E-01	2 77	1E-01
630.0	0.886	Pm-148m	1.81		1.59		1.45		1.36		1.22		1.01		7.93	1E-01
635.9	0.113	Sb-125	2.31	1E-01	2.03	1E-01	1.86	1E-01	1.73	1E-01	1.56	1E-01	1.29	1E-01	1.01	1E-01
636.2	0.360	Sb-128	7.36	1E-01	6.45	1E-01	5.91	1E-01	5.52	1E-01	4.98	1E-01	4.11	1E-01	3.23	1E-01
637.0	0.073	I-131	1.49	1E-01	1.30	1E-01	1.19	1E-01	1.11	1E-01	1.00	1E-01	8.30	1E-02	6.52	1E-02
641.3	0.474	La-142	9.69	1E-01	8.50	1E-01	7.79	1E-01	7.27	1E-01	6.56	1E-01	5.42	1E-01	4.26	1E-01
647.5	0.194	Te-133m	3.97	1E-01	3.48	1E-01	3.19	1E-01	2.98	1E-01	2.69	1E-01	2.22	1E-01	1.75	1E-01
657.7	0.947	Ag-110m	1.94		1.70		1.56		1.46		1.32		1.09		8.55	1E-01
657.9	0.983	Nb-97	2.01		1.77		1.62		1.51		1.37		1.13		8.88	1E-01
661.6	0.899	Ba-137m	1.84		1.62		1.48		1.38		1.25		1.03		8.13	1E-01
664.5	0.053	Ce-143	1.08	1E-01	9.45	1E-02	8.67	1E-02	8.09	1E-02	7.30	1E-02	6.04	1E-02	4.75	1E-02
666.3	0.997	Sb-126	2.05		1.80		1.65		1.54		1.39		1.15		9.02	1E-01
667.7	0.987	I-132	2.03		1.78		1.63		1.52		1.37		1.14		8.94	1E-01
008.5	0.961	I-130 Du-105	1.9/	15-01	1./3	15-01	1.59	15.01	1.48	15.01	1.34	15-01	1.11	15.01	8./1	15-01
0/0.4	0.15/	RU-105	3.22 7.00	1E-01	2.82	1E-01	2.59	1E-01	2.42	1E-01	2.18	1E-01	1.81	1E-01	1.42	1E-01
000./ 605.0	0.303	30-127 W-197	1.20		0.38 5.21	10-01	0.80 5.00	10-01	0.40 1 00	10-01	4.93 1/1	10-01	4.U8 265		ა./I ეიი	10-01
000.0 605.0	0.310	vv-107 Sh-126	2.00	15-01	ט./ו 1 גר		0.23 1.65	12-01	4.09 1.55	12-01	4.41	15-01	3.00 1 1 A	12-01	2.00 0 10	1E-01
697 N	0.289	Sb-126	5.96	1F-01	5 23	1F-01	4 80	1F-01	4 4 8	1F-01	4 05	1E-01	3 35	1F-01	264	1E-01
	0.200	_~	0.00		0.20								2.00			

エネルギー	放出比				放射性物	勿質のℲ	宝壌中に	おける銀	沿直分布	īを表す	パラメー	ータ β	8 (g•	cm^{-2})		
(keV)	$(s^{-1}Bq^{-1})$	核種	0.	0	0.	1	0.	2	0.	3	0.	5	1.	0	2.	0
720.5	0.538	Sb-126	1.11		9.78	1E-01	8.97	1E-01	8.38	1E-01	7.57	1E-01	6.28	1E-01	4.95	1E-01
722.0	0.051	Ce-143	1.06	1E-01	9.31	1E-02	8.54	1E-02	7.98	1E-02	7.20	1E-02	5.97	1E-02	4.71	1E-02
723.3	0.197	Eu-154	4.07	1E-01	3.58	1E-01	3.28	1E-01	3.07	1E-01	2.77	1E-01	2.30	1E-01	1.81	1E-01
724.2	0.444	Zr-95	9.19	1E-01	8.08	1E-01	7.41	1E-01	6.93	1E-01	6.25	1E-01	5.18	1E-01	4.09	1E-01
724.3	0.473	Ru-105	9.78	1E-01	8.60	1E-01	7.88	1E-01	7.37	1E-01	6.65	1E-01	5.52	1E-01	4.35	1E-01
725.7	0.327	Pm-148m	6.77	1E-01	5.95	1E-01	5.45	1E-01	5.10	1E-01	4.60	1E-01	3.82	1E-01	3.01	1E-01
727.2	0.068	Bi-212	1.40	1E-01	1.23	1E-01	1.13	1E-01	1.05	1E-01	9.50	1E-02	7.88	1E-02	6.21	1E-02
/39.5 700 F	0.122	Mo-99	2.53	1E-01	1.50	IE-01	2.04	IE-01	1.91	IE-01	1.72	IE-01	1.43	1E-01	1.13	1E-01
739.5	0.023	I-130 To-124	1./1	15-01	2.25	15-01	1.37	15-01	1.29	15-01	1.10	15-01	9.03	1E-01	1.00	1E-01
742.0	1 000	Sb-128	2 07		1.82		1.67		1.56		1 4 1		1.77		9.24	1E-01
748.3	0.008	Pr-145	1.56	1E-02	1.37	1E-02	1.26	1E-02	1.18	1E-02	1.06	1E-02	8.83	1E-03	6.97	1E-03
754.0	1.000	Sb-128	2.08		1.83		1.67		1.57		1.41		1.17		9.27	1E-01
756.7	0.549	Zr-95	1.14		1.00		9.19	1E-01	8.60	1E-01	7.76	1E-01	6.45	1E-01	5.09	1E-01
763.9	0.224	Ag-110m	4.65	1E-01	4.09	1E-01	3.75	1E-01	3.51	1E-01	3.17	1E-01	2.63	1E-01	2.08	1E-01
765.8	1.000	Nb-95	2.08		1.83		1.68		1.57		1.42		1.18		9.30	1E-01
767.2	0.290	Te-134	6.04	1E-01	5.31	1E-01	4.87	1E-01	4.56	1E-01	4.11	1E-01	3.42	1E-01	2.70	1E-01
772.6	0.762	I-132	1.59		1.40		1.28		1.20		1.08		8.99	1E-01	7.10	1E-01
773.7	0.382	Te-131m	7.95	1E-01	6.99	1E-01	6.41	1E-01	6.00	1E-01	5.42	1E-01	4.50	1E-01	3.56	1E-01
//8.9	0.130	Eu-152	2.70	1E-01	2.38	1E-01	2.18	1E-01	2.04	1E-01	1.84	1E-01	1.53	1E-01	1.21	1E-01
/83./ 702.4	0.145	SD-127 Sh-120	3.03	1E-01	2.00	IE-01	2.44	IE-01	2.29	IE-01	2.06	IE-01	1./2	IE-01	1.30	1E-01
793.4	0.139	30−130 Te−131m	2.09	1E-01	2.55	1E-01	2.33	1E-01	2 1 9	1E-01	1.42	1E-01	1.10	1E-01	1.30	1E-01
795.8	0.103	Cs-134	1 78		1.57		1 43		1.34		1.07		1.04		7.98	1E-01
810.8	0.994	Co-58	2.08		1.83		1.68		1.58		1.42		1.18		9.36	1E-01
811.8	0.103	Eu-156	2.16	1E-01	1.90	1E-01	1.74	1E-01	1.63	1E-01	1.47	1E-01	1.23	1E-01	9.70	1E-02
812.8	0.430	Sb-129	9.01	1E-01	7.93	1E-01	7.27	1E-01	6.81	1E-01	6.15	1E-01	5.12	1E-01	4.05	1E-01
815.8	0.236	La-140	4.95	1E-01	4.36	1E-01	4.00	1E-01	3.75	1E-01	3.38	1E-01	2.82	1E-01	2.23	1E-01
818.5	0.997	Cs-136	2.09		1.84		1.69		1.58		1.43		1.19		9.41	1E-01
834.8	1.000	Mn-54	2.10		1.85		1.70		1.59		1.44		1.20		9.47	1E-01
839.4	1.000	Sb-130	2.10		1.85		1.70		1.59		1.44		1.20		9.49	1E-01
841.6	0.146	Eu-152m	3.07	1E-01	2.70	1E-01	2.48	IE-01	2.32	IE-01	2.10	IE-01	1./5	1E-01	1.38	1E-01
840.8 946.9	0.989	Nin-50	2.08		1.83		1.08		1.58		1.42		1.19		9.40	1E-01
840.8 847.0	0.999	I-134	2.10		1.65		1.70		1.59		1.44		1.20		9.50	1E-01
852.2	0.206	Te-131m	4.35	1E-01	3.83	1E-01	3.51	1E-01	3.29	1E-01	2.97	1E-01	2.48	1E-01	1.96	1E-01
856.7	0.176	Sb-126	3.72	1E-01	3.28	1E-01	3.00	1E-01	2.82	1E-01	2.54	1E-01	2.12	1E-01	1.68	1E-01
864.0	0.156	Te-133m	3.29	1E-01	2.90	1E-01	2.66	1E-01	2.50	1E-01	2.25	1E-01	1.88	1E-01	1.49	1E-01
873.2	0.115	Eu-154	2.43	1E-01	2.14	1E-01	1.96	1E-01	1.84	1E-01	1.66	1E-01	1.39	1E-01	1.10	1E-01
881.6	0.420	Br-84	8.88	1E-01	7.83	1E-01	7.18	1E-01	6.74	1E-01	6.08	1E-01	5.08	1E-01	4.03	1E-01
884.1	0.649	I-134	1.37		1.21		1.11		1.04		9.40	1E-01	7.84	1E-01	6.23	1E-01
884.7	0.729	Ag-110m	1.54		1.36		1.25		1.17		1.06		8.81	1E-01	6.99	1E-01
889.3	1.000	Sc-46	2.12	15 01	1.87	15 01	1./1	15 01	1.61	15 01	1.45	15 01	1.21	15 01	9.61	1E-01
911.3	0.290	AC = 228 $T_{a} = 122m$	0.10	1E-01	5.43 1.02	IE-01	4.98	1E-01	4.08	1E-01	4.ZZ	1E-01	3.33	1E-01	Z.80	1E-01
912.7	0.330	Sh-129	4 26	1E-01	3.76	1E-01	3 44	1E-01	3 24	1E-01	2 92	1E-01	2 4 4	1E-01	1 94	1E-01
914.8	0.109	Te-133m	2.32	1E-01	2.04	1E-01	1.87	1E-01	1.76	1E-01	1.59	1E-01	1.33	1E-01	1.05	1E-01
914.8	0.115	Pm-148	2.43	1E-01	2.15	1E-01	1.97	1E-01	1.85	1E-01	1.67	1E-01	1.39	1E-01	1.11	1E-01
915.3	0.171	Pm-148m	3.63	1E-01	3.21	1E-01	2.94	1E-01	2.76	1E-01	2.49	1E-01	2.08	1E-01	1.65	1E-01
934.5	0.139	Y-92	2.96	1E-01	2.61	1E-01	2.39	1E-01	2.25	1E-01	2.03	1E-01	1.70	1E-01	1.35	1E-01
934.9	0.190	Sb-130	4.05	1E-01	3.57	1E-01	3.27	1E-01	3.08	1E-01	2.78	1E-01	2.32	1E-01	1.85	1E-01
937.5	0.343	Ag-110m	7.32	1E-01	6.46	1E-01	5.91	1E-01	5.57	1E-01	5.02	1E-01	4.20	1E-01	3.34	1E-01
954.5	0.181	I-132	3.86	1E-01	3.41	1E-01	3.12	1E-01	2.94	1E-01	2.65	1E-01	2.22	1E-01	1.77	1E-01
963.3	0.120	Eu-152m	2.57	1E-01	2.27	1E-01	2.08	1E-01	1.96	1E-01	1.77	1E-01	1.48	1E-01	1.18	1E-01
904.1 061 0	0.145	⊑u−152 Δc−228	3.1U 1 17	1E-01	2./4	1E-01	2.51	1E-01	2.30 0.00	1E-01	2.13 2.00	1E-01	۱./۲ ۲۱ ۵	1E-01	1.42 5.24	1E-01
966 4	0.035	Sb-129	1.17	1E-01	1.03	1E-01	9.44 1.33	1E-02	0.00 1.25	1E-02	1 1 3	1E-02	0./1 9.48	1E-02	5.34 7.55	1E-02
969.2	0.175	Ac-228	3 74	1E-01	3 30	1E-01	3.02	1E-01	2 85	1E-01	2 57	1E-01	2 15	1E-01	1.71	1E-01
984.5	0.278	Np-238	5.96	1E-01	5.27	1E-01	4.83	1E-01	4.55	1E-01	4.10	1E-01	3.44	1E-01	2.74	1E-01
996.3	0.103	Eu-154	2.21	1E-01	1.96	1E-01	1.79	1E-01	1.69	1E-01	1.52	1E-01	1.28	1E-01	1.02	1E-01
1004.8	0.174	Eu-154	3.74	1E-01	3.31	1E-01	3.03	1E-01	2.86	1E-01	2.58	1E-01	2.16	1E-01	1.72	1E-01
1009.8	0.298	Cs-138	6.42	1E-01	5.67	1E-01	5.20	1E-01	4.90	1E-01	4.42	1E-01	3.71	1E-01	2.96	1E-01
1013.8	0.202	Pm-148m	4.35	1E-01	3.84	1E-01	3.52	1E-01	3.32	1E-01	3.00	1E-01	2.51	1E-01	2.00	1E-01
1025.9	0.096	Np-238	2.07	1E-01	1.83	1E-01	1.67	1E-01	1.58	1E-01	1.42	1E-01	1.19	1E-01	9.53	1E-02
1028.5	0.203	Np-238	4.37	1E-01	3.87	1E-01	3.54	1E-01	3.34	1E-01	3.01	1E-01	2.53	1E-01	2.02	1E-01

エネルギー	放出比			放射性	物質の土	: 壌中に	おける	鉛直分布	市を表す	パラメー	ータ β	(g •	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	0.0	0.	. 1	0.	2	0.	3	0.	5	1.	0	2.	0
1030.1	0.126	Sb-129	2.72 1E-	01 2.40	1E-01	2.20	1E-01	2.07	1E-01	1.87	1E-01	1.57	1E-01	1.25	1E-01
1038.8	0.080	I-135	1.73 1E-	01 1.53	1E-01	1.40	1E-01	1.32	1E-01	1.19	1E-01	1.00	1E-01	7.98	1E-02
1048.1	0.798	Cs-136	1.72	1.52		1.40		1.32		1.19		9.97	1E-01	7.96	1E-01
1072.6	0.150	I-134	3.24 1E-	01 2.86	1E-01	2.63	1E-01	2.48	1E-01	2.24	1E-01	1.88	1E-01	1.50	1E-01
1076.6	0.088	Rb-86	1.90 1E-	01 1.68	1E-01	1.54	1E-01	1.45	1E-01	1.31	1E-01	1.10	1E-01	8.80	1E-02
1085.9	0.099	Eu-152	2.15 1E-	01 1.90	1E-01	1.74	1E-01	1.64	1E-01	1.48	1E-01	1.25	1E-01	9.96	1E-02
1099.2	0.565	Fe-59	1.23	1.08	15 01	9.94	1E-01	9.38	1E-01	8.4/	1E-01	1.12	1E-01	5.69	1E-01
1115.5	0.130	Eu-152 Ni-65	2.90 IE-	01 2.00	1E-01	2.39	1E-01	2.25	1E-01	2.04	1E-01	1./1	1E-01	1.57	1E-01
1115.5	0.140	7n-65	1 10	9.74	1E-01	8.94	1E-01	2.47 8.44	1E-01	7.62	1E-01	6.41	1E-01	5.12	1E-01
1120.5	1.000	Sc-46	2.17	1.92		1.76	12 01	1.66	12 01	1.50		1.26		1.01	
1121.3	0.349	Ta-182	7.59 1E-	01 6.70	1E-01	6.16	1E-01	5.81	1E-01	5.25	1E-01	4.41	1E-01	3.53	1E-01
1125.5	0.114	Te-131m	2.48 1E-	01 2.19	1E-01	2.02	1E-01	1.90	1E-01	1.72	1E-01	1.44	1E-01	1.15	1E-01
1131.5	0.228	I-135	4.96 1E-	01 4.38	1E-01	4.02	1E-01	3.79	1E-01	3.43	1E-01	2.88	1E-01	2.31	1E-01
1153.5	0.071	Eu-156	1.55 1E-	01 1.37	1E-01	1.26	1E-01	1.19	1E-01	1.07	1E-01	9.03	1E-02	7.22	1E-02
1157.5	0.113	I-130	2.47 1E-	01 2.18	1E-01	2.00	1E-01	1.89	1E-01	1.71	1E-01	1.44	1E-01	1.15	1E-01
1173.2	0.999	Co-60	2.18	1.93	45.04	1.77	4 - 04	1.67	4 - 04	1.51	4 - 04	1.27	45 04	1.02	4 - 04
1004.0	0.164	1a-182	3.59 IE-	01 3.17	1E-01	2.91	1E-01	2.75	1E-01	2.49	1E-01	2.09	1E-01	1.68	1E-01
1204.9	0.003	$T_{0} = 121m$	0.3/ IE- 21/ 1E-	03 0.81	1E-03	5.34 1.74	1E-03	5.04 1.64	1E-03	4.00	1E-03	3.84 1.25	1E-03	3.08	1E-03
1200.0	0.030	Ta-182	5.99 1E-	01 5.30	1E-01	4.87	1E-01	4 60	1E-01	4 16	1E-01	3.51	1E-01	2.81	1E-01
1230.7	0.089	Eu-156	1.94 1E-	01 1.72	1E-01	1.58	1E-01	1.49	1E-01	1.35	1E-01	1.14	1E-01	9.12	1E-02
1231.0	0.116	Ta-182	2.54 1E-	01 2.24	1E-01	2.06	1E-01	1.95	1E-01	1.76	1E-01	1.48	1E-01	1.19	1E-01
1235.4	0.200	Cs-136	4.40 1E-	01 3.89	1E-01	3.58	1E-01	3.38	1E-01	3.06	1E-01	2.58	1E-01	2.06	1E-01
1238.3	0.670	Co-56	1.47	1.30		1.20		1.13		1.02		8.61	1E-01	6.90	1E-01
1242.4	0.067	Eu-156	1.47 1E-	01 1.30	1E-01	1.20	1E-01	1.13	1E-01	1.02	1E-01	8.62	1E-02	6.91	1E-02
1260.4	0.289	I-135	6.37 1E-	01 5.63	1E-01	5.18	1E-01	4.89	1E-01	4.43	1E-01	3.74	1E-01	2.99	1E-01
12/4.4	0.355	Eu-154	7.82 TE-	01 6.91	1E-01	6.37	1E-01	6.01	1E-01	5.44	1E-01	4.59	1E-01	3.68	IE-01
12/4.0	0.999	Na-22 Eo-50	2.20 0.53 1E-	01 9.13 01 9.13	1E-01	1.79	1E-01	1.09	1E-01	6.64	1E-01	5.60	1E-01	1.04	1E-01
1332.5	1 000	Co-60	2.21	1.96		1.80		1.70		1 54		1 30		1.45	
1354.5	0.026	La-141	5.84 1E-	02 5.16	1E-02	4.76	1E-02	4.50	1E-02	4.07	1E-02	3.44	1E-02	2.76	1E-02
1368.6	1.000	Na-24	2.22	1.96		1.81		1.71		1.55		1.31		1.05	
1383.9	0.900	Sr-92	2.00	1.77		1.63		1.54		1.40		1.18		9.51	1E-01
1384.3	0.243	Ag-110m	5.42 1E-	01 4.79	1E-01	4.42	1E-01	4.18	1E-01	3.79	1E-01	3.20	1E-01	2.57	1E-01
1408.0	0.209	Eu-152	4.65 1E-	01 4.11	1E-01	3.79	1E-01	3.59	1E-01	3.25	1E-01	2.75	1E-01	2.21	1E-01
1435.9	0.763	Cs-138	1./1	1.51 01 1.72	15-01	1.39	15-01	1.32	15-01	1.19	15-01	1.01	15-01	8.13	1E-01
1457.0	0.067	I-135	1.90 IE-	01 1.73	1E-01	1.00	1E-01	1.01	1E-01	1.37	1E-01	1.10	1E-01	9.55	1E-02
1465.1	0.107	Pm-148	4.97 1E-	01 4 40	1E-01	4 06	1E-01	3.84	1E-01	3 4 9	1E-01	2.95	1E-01	2 38	1E-01
1481.8	0.235	Ni-65	5.27 1E-	01 4.66	1E-01	4.31	1E-01	4.07	1E-01	3.70	1E-01	3.13	1E-01	2.52	1E-01
1505.0	0.131	Ag-110m	2.95 1E-	01 2.60	1E-01	2.41	1E-01	2.28	1E-01	2.07	1E-01	1.75	1E-01	1.41	1E-01
1524.6	0.189	K-42	4.25 1E-	01 3.76	1E-01	3.48	1E-01	3.29	1E-01	2.99	1E-01	2.53	1E-01	2.04	1E-01
1596.2	0.954	La-140	2.16	1.91		1.76		1.67		1.52		1.29		1.04	
1678.0	0.096	I-135	2.19 1E-	01 1.94	1E-01	1.79	1E-01	1.70	1E-01	1.54	1E-01	1.31	1E-01	1.06	1E-01
1091.0	0.488	Sb-124	1.11	9.82	1E-01	9.09	1E-01	8.60	1E-01	7.82	1E-01	0.05	1E-01	5.36	1E-01
1730.5	0.000	SD-129 Co-56	1.30 IE-	01 1.21	1E-01	2.01	1E-01	2 75	1E-01	9.03	1E-02	0.19 2.13	1E-02	1 72	1E-02
1791.4	0.133	I-135	1.78 1E-	01 1.58	1E-01	1 46	1E-01	1.38	1E-01	1.26	1E-01	1 07	1E-01	8 66	1E-02
1810.7	0.272	Mn-56	6.23 1E-	01 5.52	1E-01	5.12	1E-01	4.84	1E-01	4.41	1E-01	3.76	1E-01	3.03	1E-01
1897.6	0.147	Br-84	3.39 1E-	01 3.01	1E-01	2.79	1E-01	2.64	1E-01	2.40	1E-01	2.05	1E-01	1.66	1E-01
1901.3	0.072	La-142	1.65 1E-	01 1.46	1E-01	1.36	1E-01	1.29	1E-01	1.17	1E-01	9.99	1E-02	8.07	1E-02
2091.0	0.056	Sb-124	1.30 1E-	01 1.16	1E-01	1.07	1E-01	1.02	1E-01	9.26	1E-02	7.92	1E-02	6.41	1E-02
2113.0	0.143	Mn-56	3.34 1E-	01 2.97	1E-01	2.76	1E-01	2.61	1E-01	2.38	1E-01	2.04	1E-01	1.65	1E-01
2218.0	0.152	Cs-138	3.56 1E-	UI 3.16	1E-01	2.94	1E-01	2.78	1E-01	2.54	1E-01	2.17	1E-01	1.76	1E-01
2397.0 2484 1	0.133	La-142 Br-84	J.IJ IE- 150 1⊏-	01 2./9	1E-01	2.59	1E-01	2.40 1.25	1E-01	2.24 1 1 /	1E-01	0.77	1E-01	1.5/	1E-01
25427	0.007	La-142	2.37 1F-	01 212	1E-01	1.97	1E-01	1.20	1E-01	1 70	1E-01	146	1F-01	119	1E-01
2598.6	0.167	Co-56	3.98 1E-	01 3.56	1E-01	3.31	1E-01	3.13	1E-01	2.86	1E-01	2.45	1E-01	2.01	1E-01
2639.6	0.076	Cs-138	1.82 1E-	01 1.63	1E-01	1.51	1E-01	1.43	1E-01	1.31	1E-01	1.12	1E-01	9.19	1E-02
2754.0	0.999	Na-24	2.39	2.14		1.99		1.88		1.72		1.48		1.21	
3253.5	0.074	Co-56	1.80 1E-	01 1.62	1E-01	1.51	1E-01	1.42	1E-01	1.31	1E-01	1.12	1E-01	9.28	1E-02
3927.5	0.068	Br-84	1.71 1E-	01 1.53	1E-01	1.42	1E-01	1.35	1E-01	1.24	1E-01	1.07	1E-01	8.87	1E-02

エネルギー	放出比				放射性物	物質の土	:壌中に	おける銀	鉛直分布	「を表す	パラメー	- <i>γ</i> β	(g •	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	3. ()	5.	0	1	0	2	0	30	C	50	0	10	00
11.2	0.255	Pb-210	1.49	1E-03	9.01	1E-04	4.51	1E-04	2.26	1E-04	1.51	1E-04	9.09	1E-05	4.54	1E-05
12.7	0.081	Th-232	7.85	1E-04	4.76	1E-04	2.39	1E-04	1.20	1E-04	8.00	1E-05	4.80	1E-05	2.40	1E-05
12.7	0.089	Th-228	8.56	1E-04	5.19	1E-04	2.60	1E-04	1.30	1E-04	8.72	1E-05	5.24	1E-05	2.62	1E-05
13.4	0.079	U-236	9.55	1E-04	5.81	1E-04	2.92	1E-04	1.46	1E-04	9.77	1E-05	5.86	1E-05	2.93	1E-05
13.4	0.084	U-238	1.01	1E-03	0.13	1E-04	3.08	1E-04	1.54	1E-04	1.03	1E-04	6.19	1E-05	3.09	1E-05
13.4	0.094	11-232	1.13	1E-03	7 44	1E-04	3 74	1E-04	1.73	1E-04	1.15	1E-04	7.51	1E-05	3.47	1E-05
13.7	0.094	Th-234	1.24	1E-03	7.55	1E-04	3.80	1E-04	1.90	1E-04	1.27	1E-04	7.62	1E-05	3.82	1E-05
13.7	0.562	Np-237	7.44	1E-03	4.53	1E-03	2.27	1E-03	1.14	1E-03	7.62	1E-04	4.57	1E-04	2.29	1E-04
13.7	0.776	Th-231	1.03	1E-02	6.25	1E-03	3.14	1E-03	1.57	1E-03	1.05	1E-03	6.31	1E-04	3.16	1E-04
14.1	0.040	Pu-239	5.73	1E-04	3.49	1E-04	1.75	1E-04	8.78	1E-05	5.88	1E-05	3.52	1E-05	1.76	1E-05
14.1	0.082	Pu-242	1.19	1E-03	7.25	1E-04	3.65	1E-04	1.83	1E-04	1.22	1E-04	7.32	1E-05	3.67	1E-05
14.1	0.089	Pu-240	1.28	1E-03	7.82	1E-04	3.93	1E-04	1.97	1E-04	1.32	1E-04	7.89	1E-05	3.95	1E-05
14.1	0.102	Pu-238	1.4/	1E-03	8.96	1E-04	4.50	1E-04	2.25	1E-04	1.51	1E-04	9.04	1E-05	4.53	1E-05
14.1	0.103	Pu=230 Δm=941	1.49 5.73	1E-03	9.05	1E-04	4.55	1E-04	2.20	1E-04	5.89	1E-04	9.14	1E-03	4.57	1E-05 1E-04
14.4	0.505	U-237	9.04	1E-03	5.51	1E-03	2.77	1E-03	1.39	1E-03	9.00	1E-04	5 56	1E-04	2.78	1E-04
14.8	0.081	Cm-244	1.37	1E-03	8.33	1E-04	4.19	1E-04	2.10	1E-04	1.40	1E-04	8.41	1E-05	4.21	1E-05
14.8	0.085	Cm-242	1.44	1E-03	8.79	1E-04	4.42	1E-04	2.21	1E-04	1.48	1E-04	8.87	1E-05	4.44	1E-05
14.8	0.098	Am-242	1.66	1E-03	1.01	1E-03	5.09	1E-04	2.55	1E-04	1.71	1E-04	1.02	1E-04	5.12	1E-05
14.8	0.461	Cm-243	7.81	1E-03	4.76	1E-03	2.39	1E-03	1.20	1E-03	8.03	1E-04	4.81	1E-04	2.41	1E-04
14.8	0.471	Cm-245	7.98	1E-03	4.87	1E-03	2.45	1E-03	1.23	1E-03	8.21	1E-04	4.92	1E-04	2.46	1E-04
15.2	0.273	Am-242m	5.05	1E-03	3.08	1E-03	1.55	1E-03	7.77	1E-04	5.20	1E-04	3.11	1E-04	1.56	1E-04
15.5	0.101	Am-242 Mo-93	3.27	1E-03	2.00	1E-03	1.01	1E-03	5.05	1E-04	3.38 197	1E-04	2.03	1E-04	1.02	1E-04
16.6	0.165	Nb-93m	1.56	1E-03	2.07 9.55	1E-04	4 83	1E-04	2 42	1E-04	1.62	1E-04	9.74	1E-05	4 89	1E 04 1E-05
16.6	0.350	Mo-93	9.12	1E-03	5.58	1E-03	2.83	1E-03	1.42	1E-03	9.48	1E-04	5.69	1E-04	2.86	1E-04
18.6	0.090	Mo-93	3.26	1E-03	2.00	1E-03	1.02	1E-03	5.10	1E-04	3.42	1E-04	2.05	1E-04	1.03	1E-04
20.1	0.184	Rh-103m	8.14	1E-03	5.00	1E-03	2.55	1E-03	1.28	1E-03	8.57	1E-04	5.16	1E-04	2.59	1E-04
20.2	0.349	Rh-103m	1.58	1E-02	9.75	1E-03	4.97	1E-03	2.50	1E-03	1.67	1E-03	1.01	1E-03	5.06	1E-04
22.7	0.094	Rh-103m	6.30	1E-03	3.94	1E-03	2.04	1E-03	1.04	1E-03	6.96	1E-04	4.19	1E-04	2.11	1E-04
25.3	0.410	5n-11/m Th-231	3.03	1E-02	2.30	1E-02	1.19	1E-02	0.10	1E-03	4.11	1E-03	2.47	1E-03	1.24	1E-03
25.0	0.140	Sn-126	1.54	1E-02	0.40 9.68	1E-03	5.05	1E-03	2.23	1E-03	1.52	1E-03	1 05	1E-04	4.00	1E-04
27.2	0.103	Te-127m	1.00	1E-02	6.90	1E-03	3.60	1E-03	1.84	1E-03	1.24	1E-03	7.48	1E-04	3.77	1E-04
27.2	0.127	Te-129m	1.34	1E-02	8.51	1E-03	4.44	1E-03	2.27	1E-03	1.53	1E-03	9.22	1E-04	4.64	1E-04
27.2	0.327	Te-125m	3.44	1E-02	2.18	1E-02	1.14	1E-02	5.83	1E-03	3.93	1E-03	2.37	1E-03	1.19	1E-03
27.5	0.193	Te-127m	2.07	1E-02	1.32	1E-02	6.88	1E-03	3.52	1E-03	2.37	1E-03	1.43	1E-03	7.19	1E-04
27.5	0.237	Te-129m	2.55	1E-02	1.62	1E-02	8.46	1E-03	4.33	1E-03	2.92	1E-03	1.76	1E-03	8.84	1E-04
27.5	0.611	Te-125m	6.56	1E-02	4.17	1E-02	2.18	1E-02	1.11	1E-02	7.51	1E-03	4.52	1E-03	2.28	1E-03
27.8	0.150	1e-129 No-237	1.72	1E-02	1.09	1E-02	5.72	1E-03	2.93	1E-03	1.97	1E-03	1.19	1E-03	5.98	1E-04
29.4	0.132	T-129	2.30	1E-02	1.20	1E-02	7.67	1E-03	3.93	1E-03	2.17	1E-03	1.60	1E-03	8.04	1E-04
29.8	0.343	I-129	4.36	1E-02	2.78	1E-02	1.46	1E-02	7.47	1E-03	5.03	1E-03	3.03	1E-03	1.53	1E-03
30.6	0.092	Cs-134m	1.24	1E-02	7.96	1E-03	4.19	1E-03	2.16	1E-03	1.46	1E-03	8.78	1E-04	4.42	1E-04
31.0	0.067	Te-127m	9.26	1E-03	5.96	1E-03	3.15	1E-03	1.62	1E-03	1.10	1E-03	6.62	1E-04	3.33	1E-04
31.0	0.068	Te-129m	9.45	1E-03	6.08	1E-03	3.21	1E-03	1.66	1E-03	1.12	1E-03	6.75	1E-04	3.40	1E-04
31.0	0.170	Cs-134m	2.35	1E-02	1.51	1E-02	7.98	1E-03	4.11	1E-03	2.78	1E-03	1.68	1E-03	8.45	1E-04
31.0	0.212	le-125m Re-127m	2.93	1E-02	1.89	1E-02	9.96	1E-03	5.14	1E-03	3.4/	1E-03	2.09	1E-03	1.06	1E-03
32.2	0.021	Ба−137m Ва−137m	5.01	1E-03	3.68	1E-03	1.04	1E-03	1 02	1E-04	5.0Z	1E-04 1E-04	2.19 4.17	1E-04	2 10	1E-04 1E-04
33.6	0.122	I-129	1.98	1E-02	1.30	1E-02	6.97	1E-03	3.63	1E-03	2.46	1E-03	1.49	1E-03	7.53	1E-04
35.0	0.050	Cs-134m	8.81	1E-03	5.80	1E-03	3.14	1E-03	1.64	1E-03	1.11	1E-03	6.77	1E-04	3.42	1E-04
35.5	0.067	Te-125m	1.20	1E-02	7.91	1E-03	4.29	1E-03	2.25	1E-03	1.53	1E-03	9.27	1E-04	4.69	1E-04
38.7	0.223	Nd-147	4.69	1E-02	3.13	1E-02	1.72	1E-02	9.08	1E-03	6.17	1E-03	3.76	1E-03	1.90	1E-03
39.6	0.075	I-129	1.64	1E-02	1.10	1E-02	6.04	1E-03	3.19	1E-03	2.17	1E-03	1.32	1E-03	6.70	1E-04
43.0	0.118	Eu-155	2.94	1E-02	1.98	1E-02	1.10	1E-02	5.85	1E-03	3.98	1E-03	2.43	1E-03	1.23	1E-03
59.5 50.5	0.345	U-23/	1.25	1E-01	8.67	1E-02	4.98 5.10	1E-02	2.71	1E-02	1.86	1E-02	1.14	1E-02	5.83	1E-03
64.3	0.009	Sn-126	3.68	1E-01	9.02 2.58	1E-02	0.18 1 4 9	1E-02	2.82 8.18	1E-02	1.93 5.62	1E-02	3.46	1E-02	0.07	1E-03
74.7	0.674	Am-243	2.85	1E-01	2.02	1E-01	1.19	1E-01	6.57	1E-02	4.54	1E-02	2.81	1E-02	1.44	1E-02
74.8	0.104	Pb-212	4.42	1E-02	3.14	1E-02	1.85	1E-02	1.02	1E-02	7.05	1E-03	4.36	1E-03	2.24	1E-03
77.1	0.176	Pb-212	7.53	1E-02	5.36	1E-02	3.16	1E-02	1.75	1E-02	1.21	1E-02	7.49	1E-03	3.84	1E-03
84.2	0.067	Th-231	2.99	1E-02	2.14	1E-02	1.27	1E-02	7.09	1E-03	4.92	1E-03	3.06	1E-03	1.57	1E-03
86.5	0.123	Np-237	5.55	1E-02	3.98	1E-02	2.37	1E-02	1.32	1E-02	9.18	1E-03	5.71	1E-03	2.93	1E-03

エネルギー	放出比				放射性物	勿質の土	宝壌中に	おける銀	沿直分布	「を表す	パラメー	ータ β	(g •	cm^{-2})		
(keV)	$(s^{-1}Bq^{-1})$	核種	3.	0	5.	0	1	0	2	0	30)	50	0	10	00
86.5	0.309	Eu-155	1.40	1E-01	1.00	1E-01	5.97	1E-02	3.33	1E-02	2.31	1E-02	1.44	1E-02	7.38	1E-03
86.9	0.089	Sn-126	4.04	1E-02	2.90	1E-02	1.73	1E-02	9.63	1E-03	6.68	1E-03	4.16	1E-03	2.14	1E-03
87.6	0.370	Sn-126	1.68	1E-01	1.21	1E-01	7.20	1E-02	4.01	1E-02	2.79	1E-02	1.73	1E-02	8.91	1E-03
91.1	0.2/9	Nd-14/	1.29	1E-01	9.30	1E-02	5.57	1E-02	3.11	1E-02	2.16	1E-02	1.35	1E-02	6.93	1E-03
97.1	0.100	$D_{2} = 237$	7.91	1E-02	5.7Z	1E-02	3.40	1E-02 1E-02	1.93	1E-02	1.30	1E-02	8.41	1E-03	4.3Z	1E-03
99.6	0.147	Cm-243	7.11	1E-02	5.16	1E-02	3.11	1E-02	1.75	1E-02	1.22	1E-02	7.62	1E-03	3.92	1E-03
99.6	0.157	Np-239	7.58	1E-02	5.49	1E-02	3.32	1E-02	1.86	1E-02	1.30	1E-02	8.12	1E-03	4.18	1E-03
99.6	0.185	Cm-245	8.91	1E-02	6.46	1E-02	3.90	1E-02	2.19	1E-02	1.53	1E-02	9.55	1E-03	4.91	1E-03
101.1	0.266	U-237	1.29	1E-01	9.38	1E-02	5.67	1E-02	3.18	1E-02	2.22	1E-02	1.39	1E-02	7.15	1E-03
103.8	0.059	Am-242	2.89	1E-02	2.10	1E-02	1.27	1E-02	7.13	1E-03	4.98	1E-03	3.11	1E-03	1.60	1E-03
103.8	0.236	Cm-243	1.15	1E-01	8.36	1E-02	5.06	1E-02	2.84	1E-02	1.98	1E-02	1.24	1E-02	6.39	1E-03
103.8	0.251	Np=239 Cm=245	1.23	1E-01	8.91 1.05	1E-02	5.39 6.34	1E-02	3.03	1E-02	2.11	1E-02	1.32	1E-02	0.81 8.01	1E-03
105.3	0.206	Eu-155	1.01	1E-01	7.33	1E-02	4.44	1E-02	2.50	1E-02	1.74	1E-02	1.09	1E-02	5.62	1E-03
106.1	0.272	Np-239	1.34	1E-01	9.72	1E-02	5.89	1E-02	3.31	1E-02	2.31	1E-02	1.45	1E-02	7.45	1E-03
117.3	0.066	Cm-245	3.31	1E-02	2.41	1E-02	1.47	1E-02	8.30	1E-03	5.81	1E-03	3.64	1E-03	1.88	1E-03
121.1	0.173	Se-75	8.81	1E-02	6.44	1E-02	3.93	1E-02	2.22	1E-02	1.56	1E-02	9.74	1E-03	5.03	1E-03
122.1	0.855	Co-57	4.36	1E-01	3.19	1E-01	1.95	1E-01	1.10	1E-01	7.71	1E-02	4.83	1E-02	2.49	1E-02
127.5	0.141	Cs-134m	7.27	1E-02	5.33	1E-02	3.25	1E-02	1.84	1E-02	1.29	1E-02	8.10	1E-03	4.19	1E-03
133.0	0.419	Ht-181	2.19	1E-01	1.61	1E-01	9.85	1E-02	5.59	1E-02	3.92	1E-02	2.46	1E-02	1.2/	1E-02
136.0	0.590	Se-75	3 11	1E-02	2 28	1E-02	1 40	1E-02	7.95	1E-02	5.58	1E-02	3.50	1E-03	3.30 1.81	1E-03
136.5	0.106	Co-57	5.61	1E-02	4.13	1E-02	2.53	1E-02	1.44	1E-02	1.01	1E-02	6.33	1E-03	3.28	1E-03
140.5	0.890	Tc-99m	4.73	1E-01	3.48	1E-01	2.14	1E-01	1.22	1E-01	8.54	1E-02	5.36	1E-02	2.78	1E-02
143.8	0.110	U-235	5.87	1E-02	4.33	1E-02	2.66	1E-02	1.52	1E-02	1.06	1E-02	6.68	1E-03	3.46	1E-03
145.4	0.484	Ce-141	2.60	1E-01	1.92	1E-01	1.18	1E-01	6.73	1E-02	4.73	1E-02	2.97	1E-02	1.54	1E-02
158.6	0.864	Sn-117m	4.75	1E-01	3.51	1E-01	2.17	1E-01	1.24	1E-01	8.72	1E-02	5.48	1E-02	2.84	1E-02
159.0	0.840	le-123m Re-140	4.62	1E-01	3.42	1E-01	2.11	1E-01	1.21	1E-01	8.49	1E-02	5.33	1E-02	2.//	1E-02
165.9	0.062	Ba-140 Ba-139	3.43	1E-02	2.54 9.77	1E-02	1.57 6.03	1E-02	8.98 3.45	1E-03	0.32 2.44	1E-03	3.97	1E-03	2.00 7.94	1E-03
174.9	0.095	Cm-245	5.33	1E-02	3.96	1E-02	2.45	1E-02	1.41	1E-02	9.93	1E-03	6.24	1E-03	3.24	1E-03
181.1	0.061	Mo-99	3.43	1E-02	2.55	1E-02	1.58	1E-02	9.07	1E-03	6.41	1E-03	4.03	1E-03	2.09	1E-03
185.7	0.572	U-235	3.26	1E-01	2.43	1E-01	1.50	1E-01	8.64	1E-02	6.12	1E-02	3.84	1E-02	2.00	1E-02
186.0	0.033	Ra-226	1.87	1E-02	1.39	1E-02	8.62	1E-03	4.96	1E-03	3.51	1E-03	2.20	1E-03	1.14	1E-03
202.5	0.958	Y-90m	5.57	1E-01	4.16	1E-01	2.59	1E-01	1.49	1E-01	1.06	1E-01	6.65	1E-02	3.45	1E-02
205.3	0.050	U-235	2.92	1E-02	2.18	1E-02	1.36	1E-02	7.83	1E-03	5.55	1E-03	3.49	1E-03	1.81	1E-03
200.0	0.210	U = 237 Te = 134	1.20	1E-01	9.43	1E-02	5.67 6.09	1E-02	3.39 3.51	1E-02	2.40	1E-02	1.51	1E-02	7.00 8.16	1E-03
210.5	0.225	Cm-243	6.30	1E-02	4.72	1E-02	2.95	1E-02	1.71	1E-02	1.21	1E-02	7.65	1E-02	3.98	1E-03
228.2	0.113	Np-239	6.72	1E-02	5.03	1E-02	3.15	1E-02	1.82	1E-02	1.29	1E-02	8.16	1E-03	4.24	1E-03
228.2	0.882	Te-132	5.25	1E-01	3.94	1E-01	2.46	1E-01	1.42	1E-01	1.01	1E-01	6.38	1E-02	3.32	1E-02
234.7	0.261	Nb-95m	1.56	1E-01	1.17	1E-01	7.34	1E-02	4.25	1E-02	3.02	1E-02	1.91	1E-02	9.91	1E-03
238.6	0.434	Pb-212	2.61	1E-01	1.96	1E-01	1.23	1E-01	7.11	1E-02	5.04	1E-02	3.19	1E-02	1.66	1E-02
241.0	0.040	Ra-224	2.39	1E-02	1.80	1E-02	1.12	1E-02	6.53	1E-03	4.63	1E-03	2.93	1E-03	1.52	1E-03
266.0	0.591	Se-/5 V-03	3.64 4.20	1E-01	2.74	1E-01	1.72	1E-01 1E-02	1.00	1E-01	/. 0.21	1E-02	4.52	1E-02	2.35	1E-02
200.5	0.008	Pm-151	4.20	1E-02	3.16	1E-02	1.99	1E-02	1.10	1E-02	8 24	1E-03	5.22	1E-03	2.71	1E-03
277.6	0.140	Cm-243	8.71	1E-02	6.56	1E-02	4.14	1E-02	2.41	1E-02	1.71	1E-02	1.09	1E-02	5.66	1E-03
277.6	0.144	Np-239	8.97	1E-02	6.75	1E-02	4.26	1E-02	2.49	1E-02	1.76	1E-02	1.12	1E-02	5.83	1E-03
278.0	0.209	Te-134	1.30	1E-01	9.81	1E-02	6.19	1E-02	3.61	1E-02	2.56	1E-02	1.63	1E-02	8.47	1E-03
279.5	0.252	Se-75	1.57	1E-01	1.18	1E-01	7.47	1E-02	4.36	1E-02	3.09	1E-02	1.97	1E-02	1.02	1E-02
285.9	0.001	Pm-149	6.12	1E-04	4.62	1E-04	2.92	1E-04	1.70	1E-04	1.21	1E-04	7.69	1E-05	4.00	1E-05
293.3	0.420	Ce-143	2.66	1E-01	2.00	1E-01	1.27	1E-01	/.41 1 10	1E-02	5.25 0 2 7	1E-02	3.35	1E-02	1./4	1E-02
306.1	0.051	Rh-105	4.22 3.27	1E-02	2 4 7	1E-02	2.02 1.57	1E-02	9.18	1E-02	6.57 6.50	1E-03	4 15	1E-03	2.70 2.16	1E-03
312.0	0.386	Pa-233	2.47	1E-01	1.87	1E-01	1.19	1E-01	6.95	1E-02	4.93	1E-02	3.15	1E-02	1.64	1E-02
314.1	0.610	Sb-128	3.91	1E-01	2.96	1E-01	1.88	1E-01	1.10	1E-01	7.80	1E-02	4.98	1E-02	2.60	1E-02
318.9	0.192	Rh-105	1.24	1E-01	9.34	1E-02	5.93	1E-02	3.48	1E-02	2.47	1E-02	1.58	1E-02	8.22	1E-03
320.1	0.098	Cr-51	6.33	1E-02	4.79	1E-02	3.04	1E-02	1.78	1E-02	1.27	1E-02	8.08	1E-03	4.22	1E-03
330.9	0.780	Sb-130	5.06	1E-01	3.83	1E-01	2.43	1E-01	1.43	1E-01	1.02	1E-01	6.48	1E-02	3.39	1E-02
340.1	0.225	Pm-151	1.47	1E-01	1.11	1E-01	7.07	1E-02	4.16	1E-02	2.96	1E-02	1.89	1E-02	9.87	1E-03
340.5 340 1	0.422	∪s−130 Δα−111	2./5 1.26	1E-01	2.09	1E-01	1.33	1E-01	/.81 19/	1E-02	ວ.ວ4 ຊຸຊຸດ	1E-02	3.54 5.62	1E-02	1.85 2 0 /	1E-02
344.3	0.266	Eu-152	1.74	1E-01	1.32	1E-01	8.39	1E-02	4.94	1E-02	3.51	1E-02	2.24	1E-02	1.17	1E-02
														-		

エネルギー	放出比				放射性物	勿質の土	:壌中に	おける釘	鉛直分布	「を表す	パラメー	-9 E	} (g•	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	3.	0	5.	0	1	0	2	0	30)	50	C	10	00
345.9	0.120	Hf-181	7.85	1E-02	5.96	1E-02	3.79	1E-02	2.23	1E-02	1.59	1E-02	1.01	1E-02	5.30	1E-03
364.5	0.812	I-131	5.37	1E-01	4.09	1E-01	2.61	1E-01	1.54	1E-01	1.09	1E-01	6.99	1E-02	3.66	1E-02
400.7	0.116	Se-75	7.81	1E-02	5.96	1E-02	3.82	1E-02	2.26	1E-02	1.61	1E-02	1.03	1E-02	5.41	1E-03
402.5	0.690	Cm-247	4.67	1E-01	3.56	1E-01	2.28	1E-01	1.35	1E-01	9.65	1E-02	6.16	1E-02	3.24	1E-02
414.8	0.833	Sb-126	5.68	1E-01	4.34	1E-01	2.78	1E-01	1.65	1E-01	1.18	1E-01	7.52	1E-02	3.96	1E-02
417.9	0.010	Te-127	6.76	1E-03	5.17	1E-03	3.31	1E-03	1.97	1E-03	1.40	1E-03	8.96	1E-04	4.72	1E-04
418.0	0.341	I-130	2.33	1E-01	1.78	1E-01	1.14	1E-01	6.78	1E-02	4.85	1E-02	3.09	1E-02	1.63	1E-02
427.9	0.294	Sb-125	2.02	1E-01	1.55	1E-01	9.93	1E-02	5.90	1E-02	4.22	1E-02	2.69	1E-02	1.42	1E-02
435.1	0.186	Te-134	1.28	1E-01	9.80	1E-02	6.29	1E-02	3.74	1E-02	2.68	1E-02	1.71	1E-02	9.00	1E-03
438.6	0.949	Zn-69m	6.56	1E-01	5.02	1E-01	3.23	1E-01	1.92	1E-01	1.37	1E-01	8.76	1E-02	4.62	1E-02
459.6	0.074	Te-129	5.14	1E-02	3.95	1E-02	2.54	1E-02	1.52	1E-02	1.09	1E-02	6.92	1E-03	3.66	1E-03
461.0	0.099	Te-134	6.90	1E-02	5.30	1E-02	3.41	1E-02	2.03	1E-02	1.46	1E-02	9.29	1E-03	4.91	1E-03
462.8	0.307	Cs-138	2.15	1E-01	1.65	1E-01	1.06	1E-01	6.35	1E-02	4.55	1E-02	2.90	1E-02	1.53	1E-02
463.4	0.105	Sb-125	7.32	1E-02	5.62	1E-02	3.62	1E-02	2.16	1E-02	1.55	1E-02	9.86	1E-03	5.22	1E-03
469.4	0.175	Ru-105	1.23	1E-01	9.48	1E-02	6.11	1E-02	3.64	1E-02	2.61	1E-02	1.67	1E-02	8.81	1E-03
473.0	0.247	Sb-127	1.74	1E-01	1.34	1E-01	8.64	1E-02	5.15	1E-02	3.70	1E-02	2.36	1E-02	1.25	1E-02
477.6	0.103	Be-7	7.30	1E-02	5.62	1E-02	3.62	1E-02	2.16	1E-02	1.55	1E-02	9.88	1E-03	5.23	1E-03
479.5	0.253	W-187	1.79	1E-01	1.38	1E-01	8.87	1E-02	5.30	1E-02	3.80	1E-02	2.42	1E-02	1.28	1E-02
479.5	0.900	Y-90m	6.36	1E-01	4.89	1E-01	3.16	1E-01	1.88	1E-01	1.35	1E-01	8.62	1E-02	4.56	1E-02
482.0	0.830	Hf-181	5.88	1E-01	4.52	1E-01	2.92	1E-01	1.74	1E-01	1.25	1E-01	7.97	1E-02	4.22	1E-02
487.0	0.459	La-140	3.26	1E-01	2.51	1E-01	1.62	1E-01	9.67	1E-02	6.94	1E-02	4.42	1E-02	2.34	1E-02
497.1	0.889	Ru-103	6.35	1E-01	4.89	1E-01	3.16	1E-01	1.89	1E-01	1.36	1E-01	8.65	1E-02	4.58	1E-02
507.7	0.053	Zr-97	3.80	1E-02	2.93	1E-02	1.90	1E-02	1.14	1E-02	8.16	1E-03	5.20	1E-03	2.76	1E-03
511.0	0.301	Co-58	2.16	1E-01	1.67	1E-01	1.08	1E-01	6.46	1E-02	4.64	1E-02	2.96	1E-02	1.57	1E-02
511.0	1.810	Na-22	1.30		1.00		6.48	1E-01	3.88	1E-01	2.79	1E-01	1.78	1E-01	9.43	1E-02
511.9	0.207	Rh-106	1.49	1E-01	1.15	1E-01	7.41	1E-02	4.44	1E-02	3.19	1E-02	2.04	1E-02	1.08	1E-02
526.5	0.450	Sb-128	3.25	1E-01	2.51	1E-01	1.62	1E-01	9.74	1E-02	7.00	1E-02	4.47	1E-02	2.37	1E-02
529.9	0.863	I-133	6.24	1E-01	4.82	1E-01	3.12	1E-01	1.87	1E-01	1.35	1E-01	8.60	1E-02	4.56	1E-02
531.0	0.131	Nd-147	9.47	1E-02	7.31	1E-02	4.74	1E-02	2.84	1E-02	2.04	1E-02	1.31	1E-02	6.92	1E-03
536.1	0.990	I-130	7.18	1E-01	5.54	1E-01	3.59	1E-01	2.16	1E-01	1.55	1E-01	9.91	1E-02	5.25	1E-02
537.3	0.244	Ba-140	1.//	IE-01	1.37	IE-01	8.85	1E-02	5.31	1E-02	3.82	1E-02	2.44	1E-02	1.29	1E-02
544./	0.179	Sb-129	1.30	1E-01	1.01	1E-01	6.53	1E-02	3.92	1E-02	2.82	1E-02	1.81	1E-02	9.56	1E-03
550.3	0.220	Pm-148	1.60	1E-01	1.24	1E-01	8.04	1E-02	4.83	1E-02	3.48	1E-02	2.22	1E-02	1.18	1E-02
550.3 FE1 F	0.944	Pm-148m	0.88	1E-01	0.31	1E-01	3.40	1E-01	2.07	1E-01	1.49	1E-01	9.54	1E-02	5.05	1E-02
551.5 555.6	0.059	W-18/	4.29	1E-02	3.3Z	1E-02	2.10	1E-02	1.29	1E-02	9.31	1E-03	0.90	1E-03	3.10 5.10	1E-03
566.0	0.949	To-124	0.93	16-01	1.02	1E-01	3.40 6.72	1E-01	2.09	15-01	2.01	15-01	9.03	1E-02	0.00	1E-02
560.3	0.165	$C_{c}=134$	1.34	1E-01	9.51	1E-01	5.53	1E-02	4.00	1E-02	2.91	1E-02	1.07	1E-02	9.00 8.13	1E-03
600 G	0.130	Sb-125	1.10	1E_01	1.02	1E_01	6.66	1E-02	4.02	1E-02	2.40	1E-02	1.04	1E-02	0.13	1E-03
602.7	0.170	Sb-123	7.52	1E-01	5.63	1E-01	3.67	1E-01	2 2 2 2	1E-01	1.60	1E-01	1.00	1E-01	5.04	1E-02
604.6	0.375	Cs-134	7.27	1E-01	5.61	1E-01	3.66	1E-01	2.22	1E-01	1.00	1E-01	1.00	1E-01	5.41	1E-02
606.6	0.050	Sb-125	3 73	1E-02	2.89	1E-02	1.89	1E-02	1 14	1E-02	8.21	1E-03	5.27	1E-03	2 79	1E-02
610.3	0.056	Ru-103	4 17	1E-02	3 23	1E-02	2 1 1	1E-02	1 27	1E-02	9.18	1E-03	5.90	1E-03	3 12	1E-03
618.4	0.000	W-187	5 43	1E-02	4 21	1E-02	2.11	1E-02	1.66	1E-02	1 20	1E-02	7 70	1E-03	4 07	1E-03
621.8	0.098	Rh-106	7.34	1E-02	5.69	1E-02	3.71	1E-02	2.24	1E-02	1.62	1E-02	1.04	1E-02	5.51	1E-03
628.7	0.310	Sb-128	2.32	1E-01	1.80	1E-01	1.18	1E-01	7.12	1E-02	5.14	1E-02	3.31	1E-02	1.75	1E-02
630.0	0.886	Pm-148m	6.65	1E-01	5.15	1E-01	3.37	1E-01	2.04	1E-01	1.47	1E-01	9.46	1E-02	5.00	1E-02
635.9	0.113	Sb-125	8.51	1E-02	6.60	1E-02	4.31	1E-02	2.61	1E-02	1.88	1E-02	1.21	1E-02	6.41	1E-03
636.2	0.360	Sb-128	2.71	1E-01	2.10	1E-01	1.37	1E-01	8.30	1E-02	5.99	1E-02	3.86	1E-02	2.04	1E-02
637.0	0.073	I-131	5.47	1E-02	4.24	1E-02	2.77	1E-02	1.68	1E-02	1.21	1E-02	7.79	1E-03	4.12	1E-03
641.3	0.474	La-142	3.57	1E-01	2.77	1E-01	1.81	1E-01	1.10	1E-01	7.91	1E-02	5.10	1E-02	2.69	1E-02
647.5	0.194	Te-133m	1.46	1E-01	1.14	1E-01	7.44	1E-02	4.50	1E-02	3.25	1E-02	2.09	1E-02	1.11	1E-02
657.7	0.947	Ag-110m	7.18	1E-01	5.57	1E-01	3.65	1E-01	2.21	1E-01	1.60	1E-01	1.03	1E-01	5.44	1E-02
657.9	0.983	Nb-97	7.45	1E-01	5.78	1E-01	3.79	1E-01	2.30	1E-01	1.66	1E-01	1.07	1E-01	5.65	1E-02
661.6	0.899	Ba-137m	6.82	1E-01	5.30	1E-01	3.47	1E-01	2.10	1E-01	1.52	1E-01	9.80	1E-02	5.18	1E-02
664.5	0.053	Ce-143	3.99	1E-02	3.10	1E-02	2.03	1E-02	1.23	1E-02	8.88	1E-03	5.73	1E-03	3.03	1E-03
666.3	0.997	Sb-126	7.58	1E-01	5.88	1E-01	3.86	1E-01	2.34	1E-01	1.69	1E-01	1.09	1E-01	5.76	1E-02
667.7	0.987	I-132	7.50	1E-01	5.83	1E-01	3.82	1E-01	2.32	1E-01	1.67	1E-01	1.08	1E-01	5.71	1E-02
668.5	0.961	I-130	7.31	1E-01	5.68	1E-01	3.72	1E-01	2.26	1E-01	1.63	1E-01	1.05	1E-01	5.56	1E-02
676.4	0.157	Ru-105	1.19	1E-01	9.27	1E-02	6.08	1E-02	3.69	1E-02	2.67	1E-02	1.72	1E-02	9.10	1E-03
685.7	0.353	Sb-127	2.70	1E-01	2.10	1E-01	1.38	1E-01	8.36	1E-02	6.04	1E-02	3.90	1E-02	2.06	1E-02
685.8	0.316	W-187	2.42	1E-01	1.88	1E-01	1.23	1E-01	7.48	1E-02	5.41	1E-02	3.49	1E-02	1.85	1E-02
695.0	0.997	Sb-126	7.65	1E-01	5.49	1E-01	3.90	1E-01	2.37	1E-01	1.72	1E-01	1.11	1E-01	5.86	1E-02
697.0	0.289	Sb-126	2.22	1E-01	1.72	1E-01	1.13	1E-01	6.88	1E-02	4.98	1E-02	3.21	1E-02	1.70	1E-02

エネルギー	放出比				放射性物	勿質の土	宝壌中に	おける銀	沿直分布	「を表す	パラメー	-タ β	(g •	cm^{-2})		
(keV)	$(s^{-1}Bq^{-1})$	核種	3.	0	5.	0	10	0	2	0	30)	50	0	10	00
720.5	0.538	Sb-126	4.16	1E-01	3.24	1E-01	2.13	1E-01	1.30	1E-01	9.39	1E-02	6.06	1E-02	3.21	1E-02
722.0	0.051	Ce-143	3.96	1E-02	3.08	1E-02	2.03	1E-02	1.23	1E-02	8.94	1E-03	5.78	1E-03	3.06	1E-03
723.3	0.197	Eu-154	1.52	1E-01	1.19	1E-01	7.81	1E-02	4.75	1E-02	3.44	1E-02	2.22	1E-02	1.18	1E-02
724.2	0.444	Zr-95	3.44	1E-01	2.68	1E-01	1.76	1E-01	1.07	1E-01	7.76	1E-02	5.02	1E-02	2.66	1E-02
724.3	0.473	Ru-105	3.66	1E-01	2.85	1E-01	1.88	1E-01	1.14	1E-01	8.26	1E-02	5.34	1E-02	2.83	1E-02
725.7	0.327	Pm-148m	2.53	1E-01	1.97	1E-01	1.30	1E-01	7.89	1E-02	5.72	1E-02	3.69	1E-02	1.96	1E-02
727.2	0.068	BI-212	5.23	1E-02	4.07	1E-02	2.68	1E-02	1.63	1E-02	1.18	1E-02	/.63	1E-03	4.05	1E-03
/39.5 700 F	0.122	Mo-99	9.48	1E-02	/.38	1E-02	4.80	1E-02	2.96	1E-02	2.15	1E-02	1.39	1E-02	/.30	1E-03
739.5	0.023	I-130 T124	0.40	1E-01	4.90	10-02	3.20 6.02	10-02	2.00	10-02	1.40	10-01	9.30	1E-02	4.97	1E-02
742.0	1 000	1e-134 Sh-128	1.17	1E-01	9.14	1E-02	4.00	1E-02	2/2	1E-02	2.00	1E-02	1.72	1E-02	9.12	1E-03
743.3	0.008	Dr-145	5.87	1E-03	4 57	1E-03	3.02	1E-03	1.43	1E-03	1.70	1E-03	8.61	1E-04	4 57	1E-02
754.0	1 000	Sb-128	7.81	1E-01	6.08	1E-01	4 02	1E-01	2 45	1E-01	1.00	1E-01	1 15	1E-01	6.09	1E-02
756.7	0.549	Zr-95	4.29	1E-01	3.34	1E-01	2.21	1E-01	1.34	1E-01	9.75	1E-02	6.30	1E-02	3.35	1E-02
763.9	0.224	Ag-110m	1.75	1E-01	1.36	1E-01	9.02	1E-02	5.50	1E-02	3.99	1E-02	2.58	1E-02	1.37	1E-02
765.8	1.000	Nb-95	7.84	1E-01	6.11	1E-01	4.04	1E-01	2.46	1E-01	1.79	1E-01	1.15	1E-01	6.13	1E-02
767.2	0.290	Te-134	2.27	1E-01	1.77	1E-01	1.17	1E-01	7.14	1E-02	5.18	1E-02	3.35	1E-02	1.78	1E-02
772.6	0.762	I-132	5.98	1E-01	4.67	1E-01	3.08	1E-01	1.88	1E-01	1.37	1E-01	8.83	1E-02	4.69	1E-02
773.7	0.382	Te-131m	3.00	1E-01	2.34	1E-01	1.54	1E-01	9.42	1E-02	6.84	1E-02	4.42	1E-02	2.35	1E-02
778.9	0.130	Eu-152	1.02	1E-01	7.95	1E-02	5.26	1E-02	3.21	1E-02	2.33	1E-02	1.51	1E-02	8.01	1E-03
783.7	0.145	Sb-127	1.14	1E-01	8.92	1E-02	5.90	1E-02	3.60	1E-02	2.61	1E-02	1.69	1E-02	8.99	1E-03
793.4	1.000	Sb-130	7.90	1E-01	6.17	1E-01	4.08	1E-01	2.49	1E-01	1.81	1E-01	1.17	1E-01	6.23	1E-02
793.8	0.139	Te-131m	1.09	1E-01	8.54	1E-02	5.65	1E-02	3.45	1E-02	2.51	1E-02	1.62	1E-02	8.64	1E-03
/95.8	0.851	Cs-134	6.73	1E-01	5.25	1E-01	3.48	1E-01	2.12	1E-01	1.54	1E-01	9.98	1E-02	5.31	1E-02
011.0 011.0	0.994	C0-38	7.90 0.10	1E-01	0.17	1E-01	4.09	1E-01	2.50	1E-01	1.82	1E-01	1.18	1E-01	0.20	1E-02
812.8	0.103	Sh-120	3.10	1E-02	2.67	1E-02	4.24	1E-02	1.08	1E-02	7.86	1E-02	5.09	1E-02	0.49	1E-03
815.8	0.400	La-140	1.88	1E-01	1 47	1E-01	9.74	1E-02	5.95	1E-02	4.33	1E-02	2.80	1E-02	1 4 9	1E-02
818.5	0.997	Cs-136	7.94	1E-01	6.20	1E-01	4.11	1E-01	2.51	1E-01	1.83	1E-01	1.18	1E-01	6.31	1E-02
834.8	1.000	Mn-54	8.00	1E-01	6.25	1E-01	4.15	1E-01	2.54	1E-01	1.85	1E-01	1.20	1E-01	6.38	1E-02
839.4	1.000	Sb-130	8.01	1E-01	6.26	1E-01	4.16	1E-01	2.54	1E-01	1.85	1E-01	1.20	1E-01	6.40	1E-02
841.6	0.146	Eu-152m	1.17	1E-01	9.14	1E-02	6.07	1E-02	3.72	1E-02	2.71	1E-02	1.75	1E-02	9.35	1E-03
846.8	0.989	Mn-56	7.94	1E-01	6.21	1E-01	4.12	1E-01	2.52	1E-01	1.84	1E-01	1.19	1E-01	6.35	1E-02
846.8	0.999	Co-56	8.02	1E-01	6.27	1E-01	4.17	1E-01	2.55	1E-01	1.86	1E-01	1.20	1E-01	6.42	1E-02
847.0	0.954	I-134	7.66	1E-01	5.99	1E-01	3.98	1E-01	2.44	1E-01	1.77	1E-01	1.15	1E-01	6.13	1E-02
852.2	0.206	Te-131m	1.66	1E-01	1.30	1E-01	8.62	1E-02	5.28	1E-02	3.85	1E-02	2.49	1E-02	1.33	1E-02
856.7	0.176	Sb-126	1.42	1E-01	1.11	1E-01	7.39	1E-02	4.53	1E-02	3.30	1E-02	2.14	1E-02	1.14	1E-02
864.0	0.156	Te-133m	1.26	1E-01	9.85	1E-02	6.55	1E-02	4.01	1E-02	2.93	1E-02	1.90	1E-02	1.01	1E-02
8/3.Z	0.115	Eu-104 Dr-01	9.30	1E-02	1.28	1E-02	4.80	1E-02	2.97	1E-02	2.17	1E-02	1.40 5.15	1E-02	7.50	1E-03
884.1	0.420	I-134	5 26	1E-01	2.07 4.12	1E-01	2 75	1E-01	1.68	1E-01	1 23	1E-01	797	1E-02	4 26	1E-02
884 7	0.045	Ag-110m	5.20	1E-01	4.12	1E-01	3.09	1E-01	1.89	1E-01	1.20	1E-01	8.95	1E-02	4 78	1E-02
889.3	1.000	Sc-46	8.13	1E-01	6.37	1E-01	4.24	1E-01	2.60	1E-01	1.90	1E-01	1.23	1E-01	6.58	1E-02
911.3	0.290	Ac-228	2.37	1E-01	1.86	1E-01	1.24	1E-01	7.62	1E-02	5.56	1E-02	3.61	1E-02	1.93	1E-02
912.7	0.550	Te-133m	4.50	1E-01	3.53	1E-01	2.36	1E-01	1.45	1E-01	1.06	1E-01	6.85	1E-02	3.67	1E-02
914.6	0.200	Sb-129	1.64	1E-01	1.29	1E-01	8.59	1E-02	5.27	1E-02	3.85	1E-02	2.50	1E-02	1.34	1E-02
914.8	0.109	Te-133m	8.93	1E-02	7.00	1E-02	4.67	1E-02	2.87	1E-02	2.09	1E-02	1.36	1E-02	7.27	1E-03
914.8	0.115	Pm-148	9.38	1E-02	7.36	1E-02	4.91	1E-02	3.01	1E-02	2.20	1E-02	1.43	1E-02	7.64	1E-03
915.3	0.171	Pm-148m	1.40	1E-01	1.10	1E-01	7.33	1E-02	4.50	1E-02	3.29	1E-02	2.13	1E-02	1.14	1E-02
934.5	0.139	Y-92	1.14	1E-01	8.98	1E-02	6.00	1E-02	3.69	1E-02	2.70	1E-02	1.75	1E-02	9.37	1E-03
934.9	0.190	Sb-130	1.56	1E-01	1.23	1E-01	8.21	1E-02	5.04	1E-02	3.69	1E-02	2.39	1E-02	1.28	1E-02
937.5	0.343	Ag-110m	2.83	1E-01	2.22	1E-01	1.48	1E-01	9.12	1E-02	0.0/	1E-02	4.33	1E-02	2.32	1E-02
504.0 962 2	0.101	1-132 Fu-159m	1.5U Q Q7	1E-01	ו.ו/ קפק	1E-01	7.00 5.25	1E-02	4.84 २.१२	1E-02	3.04 2.26	1E-02	2.3U 1 52	1E-02	ו.∠ט גיט	1E-02
964 1	0.145	Eu-152	1 20	1E-01	9.45	1E-02	6.33	1E-02	3.20	1E-02	2.00	1E-02	1.85	1E-02	9.93	1E-03
964.8	0.055	Ac-228	4.53	1E-02	3.56	1E-02	2.38	1E-02	1.47	1E-02	1.07	1E-02	6.97	1E-03	3.74	1E-03
966.4	0.077	Sb-129	6.40	1E-02	5.03	1E-02	3.37	1E-02	2.07	1E-02	1.52	1E-02	9.85	1E-03	5.28	1E-03
969.2	0.175	Ac-228	1.45	1E-01	1.14	1E-01	7.64	1E-02	4.70	1E-02	3.44	1E-02	2.24	1E-02	1.20	1E-02
984.5	0.278	Np-238	2.32	1E-01	1.83	1E-01	1.22	1E-01	7.54	1E-02	5.52	1E-02	3.59	1E-02	1.92	1E-02
996.3	0.103	Eu-154	8.63	1E-02	6.79	1E-02	4.56	1E-02	2.81	1E-02	2.06	1E-02	1.34	1E-02	7.18	1E-03
1004.8	0.174	Eu-154	1.46	1E-01	1.15	1E-01	7.27	1E-02	4.76	1E-02	3.49	1E-02	2.27	1E-02	1.22	1E-02
1009.8	0.298	Cs-138	2.51	1E-01	1.97	1E-01	1.33	1E-01	8.17	1E-02	5.99	1E-02	3.89	1E-02	2.09	1E-02
1013.8	0.202	Pm-148m	1.70	1E-01	1.34	1E-01	8.98	1E-02	5.54	1E-02	4.06	1E-02	2.64	1E-02	1.42	1E-02
1025.9	0.096	Np-238	8.09	1E-02	6.37	1E-02	4.28	1E-02	2.64	1E-02	1.94	1E-02	1.26	1E-02	6.77	1E-03
1028.5	0.203	Np-238	1.71	1E-01	1.35	1E-01	9.06	1E-02	5.60	1E-02	4.10	1E-02	2.67	1E-02	1.43	1E-02

エネルギー	放出比				放射性物	物質の土	宝壌中に	おける針	沿直分布	īを表す	パラメー	-9 f	3 (g•	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	3.	0	5.	0	1	0	2	0	30)	50	0	10	0
1030.1	0.126	Sb-129	1.06	1E-01	8.37	1E-02	5.63	1E-02	3.48	1E-02	2.55	1E-02	1.66	1E-02	8.91	1E-03
1038.8	0.080	I-135	6.78	1E-02	5.34	1E-02	3.59	1E-02	2.22	1E-02	1.63	1E-02	1.06	1E-02	5.69	1E-03
1048.1	0.798	Cs-136	6.76	1E-01	5.32	1E-01	3.58	1E-01	2.21	1E-01	1.62	1E-01	1.06	1E-01	5.68	1E-02
1072.6	0.150	I-134	1.27	1E-01	1.01	1E-01	6.77	1E-02	4.20	1E-02	3.07	1E-02	2.00	1E-02	1.08	1E-02
1076.6	0.088	Rb-86	7.48	1E-02	5.90	1E-02	3.97	1E-02	2.46	1E-02	1.80	1E-02	1.18	1E-02	6.33	1E-03
1085.9	0.099	Eu-152	8.46	1E-02	6.68	1E-02	4.50	1E-02	2.79	1E-02	2.04	1E-02	1.33	1E-02	7.18	1E-03
1099.2	0.565	Fe-59	4.83	1E-01	3.81	1E-01	2.57	1E-01	1.60	1E-01	1.17	1E-01	7.64	1E-02	4.11	1E-02
1112.1	0.136	Eu-152	1.16	1E-01	9.18	1E-02	6.20	1E-02	3.85	1E-02	2.82	1E-02	1.84	1E-02	9.92	1E-03
1115.5	0.148	Ni-65	1.27	1E-01	1.00	1E-01	6.78	1E-02	4.22	1E-02	3.09	1E-02	2.02	1E-02	1.09	1E-02
1115.5	0.507	Zn-65	4.35	1E-01	3.44	1E-01	2.32	1E-01	1.44	1E-01	1.06	1E-01	6.90	1E-02	3.72	1E-02
1120.5	1.000	Sc-46	8.59	1E-01	6.78	1E-01	4.58	1E-01	2.85	1E-01	2.09	1E-01	1.36	1E-01	/.34	1E-02
1121.3	0.349	Ta-121	3.00	1E-01	2.37	1E-01	1.60	1E-01	9.94	1E-02	7.28	1E-02	4.70	1E-02	2.50	1E-02
1120.0	0.114	10-131M	9.82	1E-02	1.70	1E-02	1.05	1E-02	3.20	1E-02	2.39	1E-02	1.00	1E-02	8.40 1.60	1E-03
11525	0.220	I-130 Eu-156	6.14	1E-01	1.00	15-01	2.00	1E-01	2.05	1E-02	4.//	1E-02	0.01	1E-02	1.00 5.20	1E-02
1157.5	0.071	Eu-130 I-130	0.14	1E-02	4.80	1E-02	5.20	1E-02	2.05	1E-02	2 30	1E-02	9.01 1.56	1E-03	9.20 8.42	1E-03
1173.2	0.000	Co-60	8.67	1E-01	6.86	1E-01	4 64	1E-01	2 90	1E-01	2.00	1E-01	1.30	1E-01	7 4 9	1E-02
1189.0	0.000	Ta-182	1 43	1E-01	1.13	1E-01	7.65	1E-02	4 78	1E-02	3 50	1E-02	2 2 9	1E-02	1.24	1E-02
1204.9	0.003	Y-91	2 62	1E-03	2 07	1E-03	1 4 1	1E-03	8 79	1E-04	6 4 4	1E-04	4 2 2	1E-04	2.28	1E-04
1206.6	0.098	Te-131m	8.52	1E-02	6.74	1E-02	4.57	1E-02	2.86	1E-02	2.09	1E-02	1.37	1E-02	7.41	1E-03
1221.4	0.273	Ta-182	2.39	1E-01	1.90	1E-01	1.29	1E-01	8.05	1E-02	5.90	1E-02	3.87	1E-02	2.09	1E-02
1230.7	0.089	Eu-156	7.77	1E-02	6.16	1E-02	4.18	1E-02	2.62	1E-02	1.92	1E-02	1.26	1E-02	6.79	1E-03
1231.0	0.116	Ta-182	1.01	1E-01	8.03	1E-02	5.45	1E-02	3.41	1E-02	2.50	1E-02	1.64	1E-02	8.86	1E-03
1235.4	0.200	Cs-136	1.76	1E-01	1.39	1E-01	9.46	1E-02	5.93	1E-02	4.35	1E-02	2.85	1E-02	1.54	1E-02
1238.3	0.670	Co-56	5.88	1E-01	4.66	1E-01	3.16	1E-01	1.98	1E-01	1.45	1E-01	9.53	1E-02	5.15	1E-02
1242.4	0.067	Eu-156	5.89	1E-02	4.67	1E-02	3.17	1E-02	1.99	1E-02	1.46	1E-02	9.55	1E-03	5.16	1E-03
1260.4	0.289	I-135	2.55	1E-01	2.02	1E-01	1.38	1E-01	8.64	1E-02	6.33	1E-02	4.15	1E-02	2.24	1E-02
1274.4	0.355	Eu-154	3.14	1E-01	2.49	1E-01	1.69	1E-01	1.06	1E-01	7.80	1E-02	5.12	1E-02	2.77	1E-02
1274.5	0.999	Na-22	8.84	1E-01	7.01	1E-01	4.77	1E-01	3.00	1E-01	2.20	1E-01	1.44	1E-01	7.79	1E-02
1291.6	0.432	Fe-59	3.83	1E-01	3.04	1E-01	2.07	1E-01	1.30	1E-01	9.54	1E-02	6.27	1E-02	3.39	1E-02
1332.5	1.000	Co-60	8.94	1E-01	/.10	1E-01	4.84	1E-01	3.05	1E-01	2.24	1E-01	1.4/	1E-01	/.9/	1E-02
1354.5	1.000	La-141	2.30	1E-02	1.88	1E-02	1.28	1E-02	8.09	1E-03	5.93	1E-03	3.90	1E-03	2.11	1E-03
1202.0	0.000	Na=24	9.01	1E-01	6.46	1E-01	4.09	1E-01	3.09	1E-01	2.20	1E-01	1.49	1E-01	0.00	1E-02
1384 3	0.900	$\Delta \sigma = 110 m$	2 20	1E-01	1 75	1E-01	1 1 0	1E-01	2.79	1E-01	2.0J 5.54	1E-01	3.65	1E-01	1.01	1E-02
1408.0	0.243	Ag 110m Fu-152	1.89	1E-01	1.75	1E-01	1.13	1E-01	6.52	1E-02	4 78	1E-02	3.05	1E-02	1.50	1E-02
1435.9	0.260	Cs-138	6.96	1E-01	5.54	1E-01	3.79	1E-01	2 41	1E-01	1.76	1E-01	1.17	1E-01	6.31	1E-02
1457.6	0.087	I-135	8.00	1E-02	6.38	1E-02	4.37	1E-02	2.78	1E-02	2.03	1E-02	1.34	1E-02	7.29	1E-03
1460.8	0.107	K-40	9.80	1E-02	7.81	1E-02	5.35	1E-02	3.40	1E-02	2.49	1E-02	1.65	1E-02	8.93	1E-03
1465.1	0.222	Pm-148	2.03	1E-01	1.62	1E-01	1.11	1E-01	7.07	1E-02	5.18	1E-02	3.42	1E-02	1.86	1E-02
1481.8	0.235	Ni-65	2.16	1E-01	1.72	1E-01	1.18	1E-01	7.51	1E-02	5.51	1E-02	3.64	1E-02	1.97	1E-02
1505.0	0.131	Ag-110m	1.21	1E-01	9.64	1E-02	6.61	1E-02	4.21	1E-02	3.09	1E-02	2.04	1E-02	1.11	1E-02
1524.6	0.189	K-42	1.75	1E-01	1.39	1E-01	9.57	1E-02	6.10	1E-02	4.48	1E-02	2.96	1E-02	1.61	1E-02
1596.2	0.954	La-140	8.91	1E-01	7.12	1E-01	4.90	1E-01	3.13	1E-01	2.30	1E-01	1.52	1E-01	8.29	1E-02
1678.0	0.096	I-135	9.10	1E-02	7.28	1E-02	5.03	1E-02	3.22	1E-02	2.37	1E-02	1.57	1E-02	8.57	1E-03
1691.0	0.488	Sb-124	4.61	1E-01	3.69	1E-01	2.55	1E-01	1.63	1E-01	1.20	1E-01	7.99	1E-02	4.35	1E-02
1736.5	0.060	Sb-129	5.69	1E-02	4.56	1E-02	3.16	1E-02	2.02	1E-02	1.49	1E-02	9.91	1E-03	5.40	1E-03
1771.4	0.155	Co-56	1.48	1E-01	1.19	1E-01	8.25	1E-02	5.28	1E-02	3.91	1E-02	2.59	1E-02	1.42	1E-02
1/91.2	0.078	I-135	/.4/	1E-02	5.99	1E-02	4.15	1E-02	2.66	1E-02	1.97	1E-02	1.31	1E-02	/.14	1E-03
1010.7	0.272	MN-30	2.02	1E-01	2.10	1E-01	1.40	1E-01	9.33	1E-02	0.92	1E-02	4.59	1E-02	2.01	1E-02
1097.0	0.147	Dr=04	1.43	1E-01	5.60	1E-01	3 00	1E-02	2.14	1E-02	3.0Z	1E-02	2.04	1E-02	1.39	1E-02
2001.0	0.072	Ca 142 Sh-194	5 56	1E-02	4.48	1E-02	3.30	1E-02	2.00	1E-02	1.00	1E-02	1.24	1E-02	5.52	1E-03
2113.0	0.143	Mn-56	1 43	1E-01	1 15	1E-01	8.07	1E-02	5 21	1E-02	3 89	1F-02	2 5 9	1F-02	1 42	1E-02
2218.0	0.152	Cs-138	1 53	1E-01	1 23	1E-01	8 67	1E-02	5 61	1E-02	4 1 9	1E-02	2.80	1E-02	1 54	1E-02
2397.8	0.133	La-142	1.36	1E-01	1.10	1E-01	7.75	1E-02	5.04	1E-02	3.78	1E-02	2.53	1E-02	1.39	1E-02
2484.1	0.067	Br-84	6.94	1E-02	5.62	1E-02	3.97	1E-02	2.58	1E-02	1.94	1E-02	1.30	1E-02	7.17	1E-03
2542.7	0.100	La-142	1.04	1E-01	8.41	1E-02	5.95	1E-02	3.88	1E-02	2.92	1E-02	1.95	1E-02	1.08	1E-02
2598.6	0.167	Co-56	1.75	1E-01	1.42	1E-01	1.00	1E-01	6.55	1E-02	4.92	1E-02	3.30	1E-02	1.82	1E-02
2639.6	0.076	Cs-138	7.98	1E-02	6.48	1E-02	4.59	1E-02	3.00	1E-02	2.26	1E-02	1.52	1E-02	8.38	1E-03
2754.0	0.999	Na-24	1.06		8.59	1E-01	6.10	1E-01	4.00	1E-01	3.01	1E-01	2.03	1E-01	1.12	1E-01
3253.5	0.074	Co-56	8.10	1E-02	6.62	1E-02	4.73	1E-02	3.13	1E-02	2.37	1E-02	1.60	1E-02	8.92	1E-03
3927.5	0.068	Br-84	7.77	1E-02	6.38	1E-02	4.61	1E-02	3.07	1E-02	2.34	1E-02	1.59	1E-02	8.93	1E-03

付録 2 線量率と地上高 1m での γ線フルエンス率との関係

付表-2-1 線量率と地上高1mでのγ線フルエンス率との関係

単位	:	(cm^{-2})	• s ⁻¹)	/	$(\mu Gy / h)$
, ,		(/	/	

エネルギー	放出比				放射性物	物質の土	:壌中に	おける	鉛直分布	īを表す	パラメー	-9 E	3 (g•	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	0.	0	0.	1	0.	2	0.	3	0.	5	1.	0	2.	0
11.2	0.255	Pb-210	3.82	1E+01	3.67	1E+01	3.48	1E+01	3.32	1E+01	3.08	1E+01	2.75	1E+01	2.43	1E+01
12.7	0.081	Th-232	5.26	1E+01	5.49	1E+01	5.52	1E+01	5.47	1E+01	5.44	1E+01	5.28	1E+01	5.02	1E+01
12.7	0.089	Th-228	4.77	1E+01	4.42	1E+01	4.06	1E+01	3.73	1E+01	3.27	1E+01	2.57	1E+01	1.94	1E+01
13.4	0.079	U-236	6.11	1E+01	6.40	1E+01	6.51	1E+01	6.55	1E+01	6.56	1E+01	6.51	1E+01	6.43	1E+01
13.4	0.084	U-238	6.12	1E+01	6.42	1E+01	6.54	1E+01	6.53	1E+01	6.55	1E+01	6.51	1E+01	6.47	1E+01
13.4	0.094	U-234	6.08	1E+01	6.39	1E+01	6.49	1E+01	6.47	1E+01	6.46	1E+01	6.38	1E+01	6.25	1E+01
13.4	0.102	U-232	6.03	1E+01	6.33	1E+01	6.37	1E+01	6.30	1E+01	6.25	1E+01	6.04	1E+01	5.76	1E+01
13.7	0.094	Th-234	4.56	1E+01	3.61	1E+01	2.95	1E+01	2.52	1E+01	2.01	1E+01	1.42	1E+01	1.00	1E+01
13.7	0.562	Np-237	4.91	1E+01	4.24	1E+01	3.71	1E+01	3.33	1E+01	2.83	1E+01	2.18	1E+01	1.65	1E+01
13.7	0.776	Th-231	5.49	1E+01	5.21	1E+01	4.90	1E+01	4.62	1E+01	4.24	1E+01	3.63	1E+01	3.05	1E+01
14.1	0.040	Pu-239	6.30	1E+01	6.91	1E+01	7.04	1E+01	7.05	1E+01	7.05	1E+01	6.92	1E+01	6.70	1E+01
14.1	0.082	Pu-242	6.96	1E+01	7.31	1E+01	7.43	1E+01	7.46	1E+01	7.49	1E+01	7.53	1E+01	7.53	1E+01
14.1	0.089	Pu-240	6.93	1E+01	7.29	1E+01	7.37	1E+01	7.41	1E+01	7.47	1E+01	7.49	1E+01	7.49	1E+01
14.1	0.102	Pu-238	6.97	1E+01	7.32	1E+01	7.43	1E+01	7.48	1E+01	7.47	1E+01	7.52	1E+01	7.49	1E+01
14.1	0.103	Pu-236	6.92	1E+01	7.28	1E+01	7.35	1E+01	7.41	1E+01	7.41	1E+01	7.41	1E+01	7.37	1E+01
14.4	0.365	Am-241	5.31	1E+01	4.41	1E+01	3.73	1E+01	3.30	1E+01	2.75	1E+01	2.09	1E+01	1.59	1E+01
14.4	0.5/5	0-237	3.34	1E+01	2.21	1E+01	1.65	1E+01	1.35	1E+01	1.01	1E+01	6.64	45.04	4.36	45.04
14.8	0.081	Cm-244	1.11	1E+01	8.11	1E+01	8.19	IE+01	8.18	IE+01	8.25	1E+01	8.28	IE+01	8.29	IE+01
14.8	0.085	Cm-242	1.12	1E+01	8.09	1E+01	8.14	1E+01	8.19	1E+01	8.23	1E+01	8.26	1E+01	8.23	1E+01
14.8	0.098	Am-242	2.38	1E+01	2.06	1E+01	1./8	1E+01	1.57	1E+01	1.32	1E+01	9.75		/.06	
14.8	0.461	Cm-243	3.27	1E+01	2.12	1E+01	1.5/	1E+01	1.26	1E+01	9.37	15.01	6.01		3.89	
14.8	0.4/1	Cm-245	4.18	1E+01	2.91	1E+01	2.22	1E+01	1.82	1E+01	1.38	1E+01	9.08	15.01	6.04	15.01
15.2	0.273	Am-242m	/.81	1E+01	8.20	1E+01	8.28	1E+01	8.28	1E+01	8.25	1E+01	8.14	1E+01	7.93	1E+01
15.5	0.161	Am-242	4.26	1E+01	3.79	1E+01	3.35	1E+01	2.99	1E+01	2.53	1E+01	1.90	1E+01	1.39	1E+01
10.5	0.183	Mo-93	3.03	1E+01	3.13	1E+01	3.12	1E+01	3.13	1E+01	3.14	1E+01	3.13	1E+01	3.10	1E+01
10.0	0.060	Nb-93m	5.72	1E+01	6.08	1E+01	6.09	1E+01	0.00	1E+01	0.12	1E+01	0.10	1E+01	0.17	1E+01
10.0	0.350	Mo-93	5.84	1E+01	0.00	1E+01	0.03	1E+01	0.07	1E+01	0.08	1E+01	0.10	1E+01	0.10	1E+01
18.0	0.090	Mo-93	1.70	1E+01	1.94	1E+01	2.01	1E+01	2.00	1E+01	2.10	101	2.10	1E+01	2.19	1E+01
20.1	0.184	Rn-103m	4.42	1E+01	4.51	1E+01	4.49	1E+01	4.43	1E+01	4.41	1E+01	4.30	1E+01	4.33	1E+01
20.2	0.349	Rn=103m	0.42	16+01	0.04	16+01	0.09	1 = + 01	2.00	15+01	2.02	1 = + 01	0.40	16+01	2 20	15+01
22.7	0.034	Sn-117m	5 10	1E+01	4.08	1E+01	2.00	1E+01	2.52	1E+01	2.63	1E+01	1 97	1E+01	1 44	1E+01
25.6	0.410	Th-231	2 4 1	1E+01	4.00	1E+01	3.43	1E+01	3.86	1E+01	4.05	1E+01	4.07	1E+01	3 78	1E+01
26.4	0.140	Sn-126	4 96	1E+01	4 35	1E+01	3 80	1E+01	3 56	1E+01	3 1 1	1E+01	2.07	1E+01	1 95	1E+01
20.4	0.100	Te-127m	6 75	1E+01	7 16	1E+01	7 20	1E+01	7 18	1E+01	7.09	1E+01	6 98	1E+01	6.84	1E+01
27.2	0.100	Te-129m	4 69	1E+01	4 18	1E+01	3.82	1E+01	3 54	1E+01	3 13	1E+01	2 5 5	1E+01	1 98	1E+01
27.2	0.327	Te-125m	6.97	1E+01	7 20	1E+01	7.22	1E+01	7 17	1E+01	7 1 1	1E+01	7.03	1E+01	6.89	1E+01
27.5	0.193	Te-127m	1.27	1E+02	1.35	1E+02	1.36	1E+02	1.36	1E+02	1.35	1E+02	1.33	1E+02	1.30	1E+02
27.5	0.237	Te-129m	8.79	1E+01	7.91	1E+01	7.23	1E+01	6.72	1E+01	5.94	1E+01	4.84	1E+01	3.75	1E+01
27.5	0.611	Te-125m	1.31	1E+02	1.36	1E+02	1.37	1E+02	1.36	1E+02	1.35	1E+02	1.34	1E+02	1.31	1E+02
27.8	0.156	Te-129	6.29	1E+01	5.02	1E+01	4.27	1E+01	3.81	1E+01	3.18	1E+01	2.38	1E+01	1.72	1E+01
29.4	0.152	Np-237	3.49	1E+01	4.49	1E+01	4.91	1E+01	5.03	1E+01	4.99	1E+01	4.64	1E+01	3.98	1E+01
29.5	0.185	I-129	7.84	1E+01	7.90	1E+01	7.83	1E+01	7.70	1E+01	7.58	1E+01	7.33	1E+01	7.11	1E+01
29.8	0.343	I-129	1.47	1E+02	1.49	1E+02	1.48	1E+02	1.45	1E+02	1.43	1E+02	1.39	1E+02	1.35	1E+02
30.6	0.092	Cs-134m	4.79	1E+01	5.07	1E+01	4.88	1E+01	4.60	1E+01	4.20	1E+01	3.57	1E+01	2.91	1E+01
31.0	0.067	Te-127m	4.78	1E+01	5.34	1E+01	5.52	1E+01	5.60	1E+01	5.67	1E+01	5.74	1E+01	5.78	1E+01
31.0	0.068	Te-129m	2.75	1E+01	2.59	1E+01	2.42	1E+01	2.29	1E+01	2.07	1E+01	1.73	1E+01	1.37	1E+01
31.0	0.170	Cs-134m	8.88	1E+01	9.44	1E+01	9.11	1E+01	8.60	1E+01	7.87	1E+01	6.72	1E+01	5.50	1E+01
31.0	0.212	Te-125m	4.94	1E+01	5.37	1E+01	5.52	1E+01	5.59	1E+01	5.67	1E+01	5.77	1E+01	5.81	1E+01
31.8	0.021	Ba-137m	1.15		8.64	1E-01	7.26	1E-01	6.42	1E-01	5.35	1E-01	4.02	1E-01	2.91	1E-01
32.2	0.038	Ba-137m	2.13		1.60		1.35		1.19		1.00		7.51	1E-01	5.48	1E-01
33.6	0.122	I-129	5.39	1E+01	5.67	1E+01	5.77	1E+01	5.77	1E+01	5.84	1E+01	5.90	1E+01	5.97	1E+01
35.0	0.050	Cs-134m	2.69	1E+01	2.97	1E+01	2.94	1E+01	2.82	1E+01	2.65	1E+01	2.35	1E+01	2.02	1E+01
35.5	0.067	Te-125m	1.61	1E+01	1.82	1E+01	1.92	1E+01	1.98	1E+01	2.06	1E+01	2.20	1E+01	2.32	1E+01
38.7	0.223	Nd-147	4.77	1E+01	4.09	1E+01	3.69	1E+01	3.39	1E+01	3.01	1E+01	2.48	1E+01	1.97	1E+01
39.6	0.075	I-129	3.47	1E+01	3.83	1E+01	4.03	1E+01	4.11	1E+01	4.30	1E+01	4.54	1E+01	4.84	1E+01
43.0	0.118	Eu-155	6.01	1E+01	5.55	1E+01	5.20	1E+01	4.90	1E+01	4.46	1E+01	3.85	1E+01	3.27	1E+01
59.5	0.345	U-237	5.37	1E+01	6.37	1E+01	6.58	1E+01	6.60	1E+01	6.44	1E+01	5.95	1E+01	5.24	1E+01
59.5	0.359	Am-241	1.40	1E+02	2.07	1E+02	2.43	1E+02	2.66	1E+02	2.88	1E+02	3.07	1E+02	3.12	1E+02
64.3	0.096	Sn-126	3.91	1E+01	4.41	1E+01	4.56	1E+01	4.62	1E+01	4.61	1E+01	4.49	1E+01	4.23	1E+01
74.7	0.674	Am-243	2.96	1E+02	3.46	1E+02	3.60	1E+02	3.65	1E+02	3.62	1E+02	3.49	1E+02	3.27	1E+02
74.8	0.104	Pb-212	2.42	1E+01	2.42	1E+01	2.35	1E+01	2.27	1E+01	2.15	1E+01	1.93	1E+01	1.67	1E+01
77.1	0.176	Pb-212	4.06	1E+01	4.08	1E+01	3.95	1E+01	3.85	1E+01	3.63	1E+01	3.27	1E+01	2.84	1E+01
84.2	0.067	Th-231	1.46	1E+01	2.63	1E+01	3.52	1E+01	4.18	1E+01	5.11	1E+01	6.42	1E+01	7.49	1E+01
86.5	0.123	Np-237	3.30	1E+01	5.45	1E+01	6.78	1E+01	7.63	1E+01	8.66	1E+01	9.86	1E+01	1.04	1E+02

単位 : (cm⁻²・s⁻¹) / (μGy/h)

エネルギー	放出比			,	放射性物	物質の土	:壌中に	おける銀	沿直分布	を表す	パラメー	$-\beta \beta$	(g •	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	0.	0	0.	1	0.	2	0.	3	0.	5	1.	0	2.	0
86.5	0.309	Eu-155	1.67	1E+02	1.74	1E+02	1.73	1E+02	1.70	1E+02	1.65	1E+02	1.56	1E+02	1.46	1E+02
86.9	0.089	Sn-126	3.67	1E+01	4.25	1E+01	4.48	1E+01	4.58	1E+01	4.67	1E+01	4.66	1E+01	4.56	1E+01
87.6	0.370	Sn-126	1.52	1E+02	1.77	1E+02	1.87	1E+02	1.91	1E+02	1.94	1E+02	1.94	1E+02	1.90	1E+02
91.1	0.279	Nd-147	6.49	1E+01	6.49	1E+01	6.39	1E+01	6.25	1E+01	6.03	1E+01	5.59	1E+01	5.02	1E+01
97.1	0.166	U-237	2.61	1E+01	3.26	1E+01	3.47	1E+01	3.54	1E+01	3.56	1E+01	3.46	1E+01	3.21	1E+01
98.4	0.157	Pa-233	2.04	1E+01	2.26	1E+01	2.30	1E+01	2.28	1E+01	2.21	1E+01	2.07	1E+01	1.85	1E+01
99.6	0.147	Cm-243	2.67	1E+01	3.23	1E+01	3.40	1E+01	3.44	1E+01	3.42	1E+01	3.26	1E+01	2.97	1E+01
99.6	0.157	Np-239	2.27	1E+01	2.64	1E+01	2.75	1E+01	2.76	1E+01	2.71	1E+01	2.56	1E+01	2.33	1E+01
99.6	0.185	Cm-245	4.18	1E+01	5.43	1E+01	5.93	1E+01	6.08	1E+01	6.19	1E+01	6.02	1E+01	5.63	1E+01
101.1	0.266	U-237	4.21	1E+01	5.26	1E+01	5.62	1E+01	5./5	1E+01	5.79	1E+01	5.62	1E+01	5.24	1E+01
103.8	0.059	Am-242	3.68	1E+01	5.93	1E+01	7.34	1E+01	8.17	1E+01	9.14	1E+01	1.00	1E+02	1.03	1E+02
103.8	0.230	Cm-243	4.28	1E+01	0.20	1E+01	5.49 4.41	15+01	5.55	1E+01	0.03 4 07	101	5.20 4.1.4	1E+01	4.80	101
103.0	0.201	Np=239 Cm=245	5.04 6.72	1E+01	4.25 9.74	1E+01	4.41	1E+01	4.42	1E+01	4.37	1E+01	4.14	1E+01	3.70 0.17	1E+01
105.0	0.295		1 1 2	15+01	0.74	15+01	9.51	15+01	9.01	15+01	9.97	15+01	9.72	15+01	1.05	15+01
105.5	0.200	Eu-133 No-239	3.05	1E+02	1.10	1E+02	1.19	1E+02	1.10	1E+02	1.15	1E+02	1.10	1E+02	1.05	1E+02
1173	0.272	Cm-245	1 50	1E+01	1 96	1E+01	4.75 214	1E+01	4.0Z	1E+01	2.26	1E+01	2 2 1	1E+01	2.08	1E+01
121.1	0.000	Se-75	1.30	1E+01	1.50	1E+01	1.50	1E+01	1 48	1E+01	1 43	1E+01	1.32	1E+01	1 18	1E+01
121.1	0.855	Co-57	1.40	1E+02	2.30	1E+02	2 4 1	1E+02	2 4 1	1E+02	2.37	1E+02	2.23	1E+02	2.04	1E+02
127.5	0.000	Cs-134m	8.60	1E+01	1.16	1E+02	1.29	1E+02	1.35	1E+02	1.42	1E+02	1.48	1E+02	1.50	1E+02
133.0	0.419	Hf-181	2.94	1E+01	2.84	1E+01	2.75	1E+01	2.69	1E+01	2.56	1E+01	2.35	1E+01	2.10	1E+01
133.5	0.111	Ce-144	1.80	1E+02	1.91	1E+02	1.92	1E+02	1.92	1E+02	1.90	1E+02	1.83	1E+02	1.74	1E+02
136.0	0.590	Se-75	4.95	1E+01	5.24	1E+01	5.20	1E+01	5.15	1E+01	4.98	1E+01	4.60	1E+01	4.16	1E+01
136.5	0.106	Co-57	2.31	1E+01	2.90	1E+01	3.04	1E+01	3.06	1E+01	3.02	1E+01	2.84	1E+01	2.62	1E+01
140.5	0.890	Tc-99m	2.77	1E+02	2.72	1E+02	2.66	1E+02	2.60	1E+02	2.50	1E+02	2.30	1E+02	2.09	1E+02
143.8	0.110	U-235	1.82	1E+01	2.14	1E+01	2.20	1E+01	2.22	1E+01	2.20	1E+01	2.07	1E+01	1.90	1E+01
145.4	0.484	Ce-141	2.33	1E+02	2.34	1E+02	2.30	1E+02	2.28	1E+02	2.21	1E+02	2.06	1E+02	1.91	1E+02
158.6	0.864	Sn-117m	1.50	1E+02	1.67	1E+02	1.72	1E+02	1.75	1E+02	1.76	1E+02	1.72	1E+02	1.63	1E+02
159.0	0.840	Te-123m	1.79	1E+02	1.90	1E+02	1.93	1E+02	1.92	1E+02	1.91	1E+02	1.83	1E+02	1.71	1E+02
162.6	0.062	Ba-140	1.19	1E+01	1.21	1E+01	1.19	1E+01	1.17	1E+01	1.13	1E+01	1.05	1E+01	9.55	
165.9	0.238	Ba-139	2.07	1E+02	2.02	1E+02	1.95	1E+02	1.93	1E+02	1.86	1E+02	1.73	1E+02	1.57	1E+02
174.9	0.095	Cm-245	2.26	1E+01	2.99	1E+01	3.26	1E+01	3.42	1E+01	3.48	1E+01	3.47	1E+01	3.32	1E+01
181.1	0.061	Mo-99	1.67	1E+01	1.78	1E+01	1.53	1E+01	1.49	1E+01	1.43	1E+01	1.32	1E+01	1.19	1E+01
185.7	0.572	U-235	9.72	1E+01	1.15	1E+02	1.18	1E+02	1.19	1E+02	1.18	1E+02	1.13	1E+02	1.05	1E+02
186.0	0.033	Ra-226	1.71	1E+02	1.81	1E+02	1.79	1E+02	1.77	1E+02	1.72	1E+02	1.62	1E+02	1.48	1E+02
202.5	0.958	Y-90m	6.08	1E+01	5.85	1E+01	5.60	1E+01	5.53	1E+01	5.29	1E+01	4.93	1E+01	4.46	1E+01
205.3	0.050	U-235	8.62		1.02	1E+01	1.05	1E+01	1.06	1E+01	1.05	1E+01	1.01	1E+01	9.35	
208.0	0.216	U-237	3.62	1E+01	4.63	1E+01	4.96	1E+01	5.14	1E+01	5.25	1E+01	5.23	1E+01	5.02	1E+01
210.5	0.223	Te-134	1.05	1E+01	1.01	1E+01	9.75	45.04	9.55	45.04	9.19	45.04	8.62	45.04	7.80	45.04
228.2	0.106	Cm-243	2.06	1E+01	2.55	1E+01	2.69	1E+01	2.78	1E+01	2.80	1E+01	2.72	1E+01	2.58	1E+01
228.2	0.113	Np-239	1.75	1E+01	2.10	101	2.18	101	1.20	1E+01	1.20	101	2.10	101	2.02	101
220.2	0.002	1e-132	0.26		1.01	102	1.30	15+02	1.32	16+02	1.29	102	1.20	102	1.10	102
234.7	0.201		9.30	1E+02	1.20	1E+02	1.22	1E+02	1.20	1E+02	1.29	1E+02	1.20	1E+02	0.52	1E+01
230.0	0.434	$P_{D} = 212$ $R_{D} = -224$	1.09	1E+02	1.14	1E+02	1.13	1E+02	1.12	1E+02	1.09	1E+02	1.03	1E+02	9.JZ	1E+01
241.0	0.591	Se-75	5 29	1E+01	5.67	1E+01	5.65	1E+01	5.63	1E+02	5.51	1E+01	5 20	1E+01	4 79	1E+01
266.9	0.068	Y-93	3 53	1E+01	3.04	1E+01	3.26	1E+01	3 20	1E+01	3.07	1E+01	2.86	1E+01	2.58	1E+01
275.2	0.068	Pm-151	8 25		8 0 9		7.87		7.77		7 56		7.08		6 50	
277.6	0.140	Cm-243	2.77	1E+01	3.46	1E+01	3.67	1E+01	3.78	1E+01	3.83	1E+01	3.75	1E+01	3.52	1E+01
277.6	0.144	Np-239	2.28	1E+01	2.74	1E+01	2.85	1E+01	2.91	1E+01	2.92	1E+01	2.84	1E+01	2.69	1E+01
278.0	0.209	Te-134	1.01	1E+01	9.77		9.45		9.32		8.98		8.46		7.71	
279.5	0.252	Se-75	2.26	1E+01	2.43	1E+01	2.42	1E+01	2.42	1E+01	2.37	1E+01	2.24	1E+01	2.06	1E+01
285.9	0.001	Pm-149	1.10	1E+02	1.06	1E+02	1.03	1E+02	1.01	1E+02	9.76	1E+01	9.11	1E+01	8.35	1E+01
293.3	0.420	Ce-143	5.73	1E+01	5.81	1E+01	5.72	1E+01	5.71	1E+01	5.59	1E+01	5.34	1E+01	4.98	1E+01
300.1	0.066	Pa-233	9.47		1.09	1E+01	1.11	1E+01	1.13	1E+01	1.12	1E+01	1.08	1E+01	1.00	1E+01
306.1	0.051	Rh-105	2.76	1E+01	2.66	1E+01	2.57	1E+01	2.52	1E+01	2.43	1E+01	2.28	1E+01	2.08	1E+01
312.0	0.386	Pa-233	5.53	1E+01	6.33	1E+01	6.52	1E+01	6.58	1E+01	6.53	1E+01	6.28	1E+01	5.87	1E+01
314.1	0.610	Sb-128	8.53		8.21		7.95		7.82		7.53		7.03		6.39	
318.9	0.192	Rh-105	1.04	1E+02	1.00	1E+02	9.66	1E+01	9.51	1E+01	9.16	1E+01	8.60	1E+01	7.84	1E+01
320.1	0.098	Cr-51	8.62	1E+01	1.11	1E+02	1.15	1E+02	1.15	1E+02	1.13	1E+02	1.06	1E+02	9.83	1E+01
330.9	0.780	Sb-130	1.06	1E+01	1.02	1E+01	9.92		9.73		9.41		8.76		7.98	
340.1	0.225	Pm-151	2.81	1E+01	2.76	1E+01	2.70	1E+01	2.66	1E+01	2.61	1E+01	2.44	1E+01	2.26	1E+01
340.5	0.422	Cs-136	8.93		8.56		8.30		8.15		7.87		7.36		6.72	
342.1	0.067	Ag-111	1.06	1E+02	1.03	1E+02	9.90	1E+01	9.79	1E+01	9.45	1E+01	8.85	1E+01	8.14	1E+01
344.3	0.266	Eu-152	1.08	1E+01	1.03	1E+01	1.00	1E+01	9.84		9.49		8.87		8.07	

単位 : (cm⁻²・s⁻¹) / (μGy/h)

エネルギー	放出比				放射性物	勿質の土	宝壌中に	おける銀	沿直分布	テを表す	パラメー	-タ β	(g•	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	0.	0	0.	1	0.	2	0.	3	0.	5	1.	0	2.	0
345.9	0.120	Hf-181	9.24		9.10		8.88		8.76		8.49		8.00		7.33	
364.5	0.812	I-131	9.02	1E+01	8.73	1E+01	8.44	1E+01	8.35	1E+01	7.98	1E+01	7.54	1E+01	6.94	1E+01
400.7	0.116	Se-75	1.08	1E+01	1.17	1E+01	1.17	1E+01	1.17	1E+01	1.15	1E+01	1.09	1E+01	1.02	1E+01
402.5	0.690	Cm-247	9.31	1E+01	9.21	1E+01	9.07	1E+01	8.55	1E+01	8.65	1E+01	8.17	1E+01	7.58	1E+01
414.8	0.833	Sb-126	1.34	1E+01	1.29	1E+01	1.25	1E+01	1.23	1E+01	1.19	1E+01	1.12	1E+01	1.03	1E+01
417.9	0.010	1e-12/	8.03	1E+01	8.33 6.01	1E+01	8.15	1E+01	7.99	1E+01	7.82	1E+01	7.29	1E+01	6./8 5.44	1E+01
410.0 127 0	0.341	I-130 Sh-125	7.00	1E+01	0.01	1E+01	2.67	1E+01	0.49	1E+01	2 50	1E+01	2.90	1E+01	0.44 2.21	1E+01
427.5	0.234	Te-134	9.38	12.01	9.14	12.01	2.07	12.01	8.80	12.01	8.56	12,01	8.09	12.01	7.51	12.01
438.6	0.100	7n-69m	9.84	1F+01	9.48	1F+01	9 25	1E+01	914	1E+01	8 7 9	1E+01	8 2 9	1F+01	7.01	1F+01
459.6	0.074	Te-129	4 23	1E+01	4 58	1E+01	4 68	1E+01	4 70	1E+01	4 69	1E+01	4 55	1E+01	4 35	1E+01
461.0	0.099	Te-134	5.03		4.90		4.80		4.71		4.58		4.35		4.04	
462.8	0.307	Cs-138	6.58		6.31		6.15		6.02		5.83		5.46		5.05	
463.4	0.105	Sb-125	9.67		9.68		9.59		9.51		9.32		8.90		8.37	
469.4	0.175	Ru-105	1.04	1E+01	1.01	1E+01	9.93		9.77		9.47		8.97		8.31	
473.0	0.247	Sb-127	1.66	1E+01	1.60	1E+01	1.56	1E+01	1.53	1E+01	1.49	1E+01	1.40	1E+01	1.31	1E+01
477.6	0.103	Be-7	9.16	1E+01	8.82	1E+01	8.63	1E+01	8.45	1E+01	8.20	1E+01	7.74	1E+01	7.19	1E+01
479.5	0.253	W-187	2.15	1E+01	2.11	1E+01	2.06	1E+01	2.03	1E+01	1.98	1E+01	1.86	1E+01	1.75	1E+01
479.5	0.900	Y-90m	6.25	1E+01	6.09	1E+01	5.93	1E+01	5.83	1E+01	5.71	1E+01	5.36	1E+01	4.99	1E+01
482.0	0.830	Hf-181	6.64	1E+01	6.56	1E+01	6.44	1E+01	6.34	1E+01	6.15	1E+01	5.85	1E+01	5.47	1E+01
487.0	0.459	La-140	9.91		9.54		9.29		9.12		8.83		8.28		7.67	
497.1	0.889	Ru-103	8.10	1E+01	7.75	1E+01	7.59	1E+01	7.46	1E+01	7.26	1E+01	6.83	1E+01	6.40	1E+01
507.7	0.053	Zr-97	1.30	1E+01	1.20	1E+01	1.23	1E+01	1.21	1E+01	1.17	1E+01	9.88	15.01	1.03	1E+01
511.0	1.010	Co-58	1.38	1E+01	1.30	1E+01	1.33	1E+01	1.31	1E+01	1.28	1E+01	1.20	1E+01	1.12	1E+01
511.0	0.207	Na=22 Ph=106	3.09	1E+01	3.74	1E+01	3.00	1E+01	3.59	1E+01	3.49	1E+01	3.20	1E+01	3.00	1E+01
526.5	0.207	Sb-128	6.67	12.01	6.43	12.01	6.30	12.01	6 18	12.01	6.01	12,01	5.66	12.01	5 26	12.01
529.9	0.460	I-133	6 40	1F+01	6.18	1F+01	6.04	1F+01	5.92	1F+01	5.77	1F+01	5 4 4	1F+01	5.09	1F+01
531.0	0.131	Nd-147	3.59	1E+01	3.73	1E+01	3.77	1E+01	3.75	1E+01	3.76	1E+01	3.65	1E+01	3.52	1E+01
536.1	0.990	I-130	2.11	1E+01	2.03	1E+01	1.99	1E+01	1.95	1E+01	1.90	1E+01	1.79	1E+01	1.67	1E+01
537.3	0.244	Ba-140	5.28	1E+01	5.47	1E+01	5.44	1E+01	5.39	1E+01	5.31	1E+01	5.07	1E+01	4.80	1E+01
544.7	0.179	Sb-129	5.90		5.68		5.56		5.47		5.31		5.00		4.66	
550.3	0.220	Pm-148	1.87	1E+01	1.80	1E+01	1.76	1E+01	1.72	1E+01	1.67	1E+01	1.58	1E+01	1.48	1E+01
550.3	0.944	Pm-148m	2.16	1E+01	2.09	1E+01	2.05	1E+01	2.00	1E+01	1.95	1E+01	1.84	1E+01	1.72	1E+01
551.5	0.059	W-187	5.06		4.98		4.88		4.82		4.70		4.44		4.18	
555.6	0.949	Y-91m	7.97	1E+01	7.78	1E+01	7.57	1E+01	7.45	1E+01	7.29	1E+01	6.88	1E+01	6.43	1E+01
566.0	0.183	Te-134	9.49		9.26		9.11		8.96		8.77		8.33		7.80	
569.3	0.150	Cs-134	4.44		4.30		4.19		4.13		4.01		3.78		3.55	
600.6	0.1/8	Sb-125	1.68	1E+01	1.70	1E+01	1.69	1E+01	1.67	1E+01	1.65	1E+01	1.58	1E+01	1.50	1E+01
604.6	0.979	SD-124	2.63	1E+01	2.54	1E+01	2.49	1E+01	2.43	1E+01	2.30	1E+01	2.24	1E+01	2.09	1E+01
606.6	0.975	CS=134 Sb=125	2.91	IETUI	2.01	IETUI	Z.74 177	IETUI	2.09	15-01	2.03	15+01	2.40 1 1 9	IETUI	2.33	15-01
610.3	0.056	Bu-103	5 16		5.00		4.77		4.72		4.00		4.40		4.23	
618.4	0.000	W-187	6.30		6.22		6 10		6.03		5.88		5 58		5.27	
621.8	0.098	Rh-106	2.15	1E+01	2.08	1E+01	2.05	1E+01	2.01	1E+01	1.96	1E+01	1.86	1E+01	1.74	1E+01
628.7	0.310	Sb-128	4.65		4.51		4.42		4.35		4.24		4.00		3.75	
630.0	0.886	Pm-148m	2.05	1E+01	1.99	1E+01	1.94	1E+01	1.92	1E+01	1.86	1E+01	1.77	1E+01	1.66	1E+01
635.9	0.113	Sb-125	1.07	1E+01	1.09	1E+01	1.08	1E+01	1.07	1E+01	1.05	1E+01	1.02	1E+01	9.62	
636.2	0.360	Sb-128	5.41		5.24		5.14		5.06		4.93		4.66		4.37	
637.0	0.073	I-131	8.56		8.28		8.10		7.99		7.75		7.41		7.00	
641.3	0.474	La-142	1.11	1E+01	1.07	1E+01	1.05	1E+01	1.03	1E+01	9.98		9.41		8.77	
647.5	0.194	Te-133m	5.06		4.92		4.83		4.75		4.65		4.40		4.14	
657.7	0.947	Ag-110m	1.64	1E+01	1.60	1E+01	1.57	1E+01	1.54	1E+01	1.51	1E+01	1.43	1E+01	1.33	1E+01
657.9	0.983	Nb-97	6.77	1E+01	6.60	1E+01	6.45	1E+01	6.32	1E+01	6.20	1E+01	5.89	1E+01	5.52	1E+01
661.6	0.899	Ba-137m	6.87	1E+01	6.69	1E+01	6.55	1E+01	6.42	1E+01	6.31	1E+01	5.95	1E+01	5.65	1E+01
664.5	0.053	Ce-143	1.77	15.04	/.94	15.01	/.95	15.01	/.93	15.01	1.87	15.04	/.65	15.04	/.36	15.01
666.3	0.997	Sb-126	1.68	1E+01	1.64	1E+01	1.60	1E+01	1.57	1E+01	1.53	1E+01	1.45	1E+01	1.36	1E+01
00/./	0.987	I-132 I-130	2.05	15+01	1.99	1E+01	1.95	16+01	1.91	15:01	1.80	15:01	1./8	1E+01	1.66	15+01
008.5 676 4	0.901	1-130 Du-105	2.UX	15+01	2.02	15+01	1.98 0.25	12+01	1.94	12+01	1.90	15+01	1.80 0 20	10+01	1.09	15+01
6857	0.137	Nu-100 Sh-107	9.01 2.11	1E+01	9.40 2.20	1E+01	9.20 9.20	1E+01	9.13 2.20	1E+01	0.9U 2 21	1E+01	0.0U 212	1E+01	7.98 2.01	1E+01
685.8	0.316	W-187	2.44	1E+01	2.00	1E+01	2.00	1E+01	2.23	1E+01	2.24	1E+01	2.13	1E+01	2.01	1E+01
695 N	0.997	Sb-126	1.68	1E+01	1 64	1E+01	1 60	1E+01	1.58	1E+01	1.53	1E+01	1 47	1E+01	1.37	1E+01
697.0	0.289	Sb-126	4.89		4.75		4.66	01	4.57		4.47		4.24		3.99	

単位 : (cm⁻²・s⁻¹) / (μGy/h)

エネルギー	放出比			放射性	物質の土	上壌中に	おける針	台直分布	「を表す	パラメー	-タ β	(g •	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	0.0	C	. 1	0.	2	0.	3	0.	5	1.	0	2.	0
720.5	0.538	Sb-126	9.10	8.89		8.71		8.54		8.35		7.94		7.48	
722.0	0.051	Ce-143	7.63	7.82		7.83		7.82		7.76		7.56		7.30	
723.3	0.197	Eu-154	7.77	7.60	1	7.45		7.36		7.19		6.85		6.44	
724.2	0.444	Zr-95	2.85 1	1E+01 2.76	1E+01	2.70	1E+01	2.67	1E+01	2.60	1E+01	2.47	1E+01	2.32	1E+01
724.3	0.473	Ru-105	2.92 1	1E+01 2.87	1E+01	2.81	1E+01	2.78	1E+01	2.71	1E+01	2.59	1E+01	2.44	1E+01
725.7	0.327	Pm-148m	7.67	7.46	i	7.31		7.19		7.02		6.69		6.30	
727.2	0.068	Bi-212	2.79 1	1E+01 2.89	1E+01	2.89	1E+01	2.85	1E+01	2.81	1E+01	2.69	1E+01	2.53	1E+01
739.5	0.122	Mo-99	3.87 1	1E+01 4.20	1E+01	3.69	1E+01	3.63	1E+01	3.55	1E+01	3.38	1E+01	3.19	1E+01
739.5	0.823	I-130	1.80 1	1E+01 1.75	1E+01	1.71	1E+01	1.69	1E+01	1.65	1E+01	1.57	1E+01	1.48	1E+01
742.6	0.151	Te-134	8.03	7.88		7.75		7.66		7.50		7.20		6.78	
743.3	1.000	Sb-128	1.52 1	1E+01 1.48	1E+01	1.45	1E+01	1.43	1E+01	1.40	1E+01	1.33	1E+01	1.25	1E+01
748.3	0.008	Pr-145	1.37 1	1E+01 1.34	1E+01	1.32	1E+01	1.31	1E+01	1.27	1E+01	1.22	1E+01	1.16	1E+01
754.0	1.000	Sb-128	1.53 1	1E+01 1.49	1E+01	1.45	1E+01	1.44	1E+01	1.40	1E+01	1.33	1E+01	1.25	1E+01
756.7	0.549	Zr-95	3.53 1	1E+01 3.41	1E+01	3.35	1E+01	3.31	1E+01	3.23	1E+01	3.07	1E+01	2.89	1E+01
763.9	0.224	Ag-110m	3.94	3.86		3.77		3.71		3.62		3.44		3.24	
765.8	1.000	Nb-95	6.21 1	1E+01 6.04	1E+01	5.92	1E+01	5.84	1E+01	5.70	1E+01	5.44	1E+01	5.11	1E+01
767.2	0.290	Te-134	1.55 1	1E+01 1.52	1E+01	1.50	1E+01	1.48	1E+01	1.45	1E+01	1.39	1E+01	1.32	1E+01
772.6	0.762	I-132	1.61 1	1E+01 1.57	1E+01	1.53	1E+01	1.51	1E+01	1.47	1E+01	1.40	1E+01	1.32	1E+01
773.7	0.382	Te-131m	1.31 1	1E+01 1.27	1E+01	1.25	1E+01	1.23	1E+01	1.20	1E+01	1.15	1E+01	1.08	1E+01
778.9	0.130	Eu-152	5.70	5.55		5.42		5.35		5.21		4.95		4.67	
783.7	0.145	Sb-127	1.02 1	1E+01 9.93		9.72		9.62		9.36		8.96		8.50	
793.4	1.000	Sb-130	1.48 1	1E+01 1.45	1E+01	1.41	1E+01	1.40	1E+01	1.37	1E+01	1.29	1E+01	1.23	1E+01
793.8	0.139	Te-131m	4.75	4.64		4.53		4.49		4.37		4.17		3.94	
795.8	0.851	Cs-134	2.60 1	1E+01 2.54	1E+01	2.47	1E+01	2.44	1E+01	2.38	1E+01	2.27	1E+01	2.15	1E+01
810.8	0.994	Co-58	4.75 1	1E+01 4.70	1E+01	4.63	1E+01	4.59	1E+01	4.48	1E+01	4.26	1E+01	4.03	1E+01
811.8	0.103	Eu-156	4.03	3.93		3.84		3.79		3.69		3.53		3.32	
812.8	0.430	Sb-129	1.47 1	1E+01 1.43	1E+01	1.40	1E+01	1.38	1E+01	1.34	1E+01	1.28	1E+01	1.21	1E+01
815.8	0.236	La-140	5.34	5.20		5.08		5.02		4.88		4.65		4.37	
818.5	0.997	Cs-136	2.30 1	1E+01 2.24	1E+01	2.20	1E+01	2.16	1E+01	2.12	1E+01	2.02	1E+01	1.90	1E+01
834.8	1.000	Mn-54	5.66 1	1E+01 5.61	1E+01	5.54	1E+01	5.45	1E+01	5.35	1E+01	5.11	1E+01	4.81	1E+01
839.4	1.000	Sb-130	1.49 1	1E+01 1.46	1E+01	1.43	1E+01	1.41	1E+01	1.38	1E+01	1.32	1E+01	1.24	1E+01
841.6	0.146	Eu-152m	2.31 1	1E+01 2.29	1E+01	2.28	1E+01	2.25	1E+01	2.22	1E+01	2.13	1E+01	2.03	1E+01
846.8	0.989	Mn-56	3.09 1	1E+01 3.00	1E+01	2.93	1E+01	2.90	1E+01	2.81	1E+01	2.70	1E+01	2.53	1E+01
846.8	0.999	Co-56	1.58 1	1E+01 1.54	1E+01	1.52	1E+01	1.50	1E+01	1.46	1E+01	1.39	1E+01	1.31	1E+01
847.0	0.954	I-134	1.81 1	1E+01 1.//	1E+01	1./3	1E+01	1.70	1E+01	1.66	1E+01	1.58	1E+01	1.50	1E+01
852.2	0.206		7.15	6.96		0.83		0.74		0.59		0.31		5.94	
800.7	0.170	SD-120	3.05	2.98		2.91		2.87		2.80		2.08		2.54	
004.0	0.130	Te-153m	4.20	4.10		4.03		3.99		3.09		3.72		3.02	
8/3.Z	0.115	Eu-104	4.04	4.04	15:01	4.40	15:01	4.41	15+01	4.31	15+01	4.14	15+01	3.91	15+01
001.0	0.420	Dr=04 I=124	1.30 1	1E+01 1.32	15+01	1.29	15+01	1.27	16+01	1.24	15+01	1.10	15+01	1.11	101
004.1 994.7	0.049	$\Lambda = 110m$	1.20 1	1E+01 1.21	1E+01	1.10	1E+01	1.10	1E+01	1.14	1E+01	1.09	1E+01	1.03	1E+01
004.7	1 000		2.51 1	1E+01 1.20	15+01	2.20	15+01	2.24	15+01	2.20	15+01	2 20	15+01	2.00	1 = + 01
009.0	0.200	Δo=228	1 / 2 1	1E+01 2.44	1E+01	2.30	1E+01	2.30	1E+01	1.30	1E+01	1.20	1E+01	1.00	1E+01
9127	0.230	Te-122m	1 / 0 1	1E+01 1.43	1E+01	1.42	1E+01	1.41	1E+01	1.30	1E+01	1 20	1E+01	1.20	1E+01
914.6	0.200	Sb-129	6 94	676	12.01	6.62	12.01	6.56	12.01	6.38	12.01	6 10	12.01	5 70	12.01
914.8	0 109	Te-133m	2.96	2 20		283		2.00		2 75		2.63		2 4 8	
914.8	0 1 1 5	Pm-148	1 02 1	1F+01 1 00	1E+01	9 75		9.64		9.38		8.97		8.54	
915.3	0.171	Pm-148m	4 1 1	4 02		3.94		3.89		3.80		3.64		3 45	
934 5	0.139	Y-92	2 79 1	1F+01 2.72	1E+01	2.66	1E+01	2.63	1E+01	2.57	1E+01	2 46	1E+01	2.33	1E+01
934.9	0.100	Sb-130	2.70	2.81		2.00	12.01	2.00	12.01	2.67	12.01	2.40	12.01	2.00	12.01
937.5	0.343	Ag-110m	6 20	6.09		5.93		5.89		5 73		5 50		5.21	
954.5	0 181	I-132	3.91	3.81		3 73		3 70		3.61		3 46		3 2 9	
963.3	0 1 2 0	Fu-152m	1.93 1	1F+01 1.92	1E+01	191	1F+01	1 90	1F+01	1.87	1F+01	1 80	1E+01	1 73	1E+01
964 1	0.125	Eu-152	6.54	6.39	12.01	6.24	12.01	6 1 9	12.01	6.03	12.01	5 76	12.01	5 48	12.01
964.8	0.055	Ac-228	2.70	2.72		2.70		2.68		2.63		2.53		2.41	
966.4	0.077	Sb-129	2 69	2.61		2 56		2.53		2 47		2 37		2.25	
969.2	0.175	Ac-228	8.64	8 71		8.63		8.61		8.43		8.11		7.70	
984.5	0.278	Np-238	2.02 1	1E+01 2.06	1E+01	2.05	1E+01	2.04	1E+01	2.00	1E+01	1.93	1E+01	1.84	1E+01
996.3	0.103	Eu-154	4,22	4.16	01	4.07		4.05		3.95		3.81		3.63	
1004.8	0.174	Eu-154	7.14	7.03		6.89		6.86		6.70		6.43		6.12	
1009.8	0.298	Cs-138	6.90	6.73		6.58		6.52		6.35		6.08		5.77	
1013.8	0.202	Pm-148m	4.93	4.81		4.72		4.68		4.58		4.40		4.18	
1025.9	0.096	Np-238	7.02	7,15	i	7.08		7.09		6.93		6.69		6.40	
1028.5	0.203	Np-238	1.48 1	1E+01 1.51	1E+01	1.50	1E+01	1.50	1E+01	1.47	1E+01	1.42	1E+01	1.36	1E+01

単位 : (cm⁻²・s⁻¹) / (μGy/h)

エネルギー	放出比			Ĵ	放射性物	勿質の土	宝壌中に	おける針	台直分布	īを表す	パラメー	- <i>9</i> β	(g •	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	0.	0	0.	1	0.	2	0.	3	0.	5	1.	0	2.	0
1030.1	0.126	Sb-129	4.43		4.32		4.23		4.19		4.08		3.93		3.73	
1038.8	0.080	I-135	2.70	15.01	2.64	15.01	2.58	15.01	2.56	15.01	2.48	15.01	2.39	15.01	2.27	15.01
1048.1	0.798	US-130 I-134	1.89	1E+01	1.85	1E+01	1.82	1E+01	1.81	1E+01	1./0 2.71	1E+01	2.61	1E+01	1.01	1E+01
1072.0	0.088	Rb-86	4.81	1E+01	4.69	1E+01	4.60	1E+01	4.56	1E+01	4.46	1E+01	4.28	1E+01	4.07	1E+01
1085.9	0.099	Eu-152	4.54		4.43		4.33		4.30		4.19		4.05		3.85	
1099.2	0.565	Fe-59	2.53	1E+01	2.44	1E+01	2.41	1E+01	2.39	1E+01	2.33	1E+01	2.24	1E+01	2.13	1E+01
1112.1	0.136	Eu-152	6.22		6.06		5.95		5.91		5.78		5.53		5.29	
1115.5	0.148	Ni-65	1.46	1E+01	1.43	1E+01	1.40	1E+01	1.39	1E+01	1.35	1E+01	1.30	1E+01	1.24	1E+01
1110.0	0.507	Zn-00 Sc-46	4.20	1E+01	4.31 2.50	1E+01	4.28 2.45	1E+01 1E+01	4.28 2.43	1E+01 1E+01	4.19 2.38	1E+01 1E+01	4.00 2.29	1E+01 1E+01	3.85 2.19	1E+01 1E+01
1121.3	0.349	Ta-182	1.38	1E+01	1.36	1E+01	1.35	1E+01	1.34	1E+01	1.31	1E+01	1.27	1E+01	1.21	1E+01
1125.5	0.114	Te-131m	4.08		3.98		3.93		3.89		3.81		3.66		3.48	
1131.5	0.228	I-135	7.75		7.55		7.40		7.34		7.16		6.87		6.56	
1153.5	0.071	Eu-156	2.89		2.83		2.78		2.77		2.69		2.59		2.47	
1157.5	0.113	I-130	2.61	15:01	2.54	15+01	2.49	15:01	2.48	15+01	2.43	15+01	2.34	15+01	2.23	15101
11/3.2	0.999	Co-00 Ta-182	6.52	15-01	6 4 6	IE+01	2.00	IETUI	2.04 6.35	15-01	6.23	1E+01	6.01	IETUI	1.03 5.77	1E+01
1204.9	0.003	Y-91	4.44	1E+01	4.34	1E+01	4.27	1E+01	4.24	1E+01	4.15	1E+01	3.98	1E+01	3.80	1E+01
1206.6	0.098	Te-131m	3.52		3.44		3.39		3.36		3.28		3.18		3.03	
1221.4	0.273	Ta-182	1.09	1E+01	1.08	1E+01	1.07	1E+01	1.06	1E+01	1.04	1E+01	1.01	1E+01	9.66	
1230.7	0.089	Eu-156	3.62		3.55		3.49		3.47		3.39		3.28		3.12	
1231.0	0.116	1a-182 Co-126	4.61		4.56		4.51		4.50		4.40		4.25		4.09	
1235.4	0.200	Co-56	4.65	1F+01	1.08	1F+01	4.00	1F+01	4.03	1F+01	1 03	1F+01	4.37 9.97		949	
1242.4	0.067	Eu-156	2.74		2.69		2.65		2.63		2.56		2.48		2.37	
1260.4	0.289	I-135	9.95		9.71		9.54		9.48		9.25		8.93		8.49	
1274.4	0.355	Eu-154	1.49	1E+01	1.47	1E+01	1.45	1E+01	1.44	1E+01	1.41	1E+01	1.37	1E+01	1.31	1E+01
1274.5	0.999	Na-22	2.35	1E+01	2.30	1E+01	2.26	1E+01	2.24	1E+01	2.20	1E+01	2.12	1E+01	2.04	1E+01
1291.0	0.432	Fe-59 Co-60	1.90	1E+01 1E+01	1.91 2.13	1E+01	1.88	1E+01 1E+01	1.87	1E+01 1E+01	2.03	1E+01 1E+01	1./0	1E+01 1E+01	1.08	1E+01 1E+01
1354.5	0.026	La-141	3.44	1E+01	3.35	1E+01	3.31	1E+01	3.28	1E+01	3.20	1E+01	3.10	1E+01	2.95	1E+01
1368.6	1.000	Na-24	1.51	1E+01	1.47	1E+01	1.45	1E+01	1.44	1E+01	1.41	1E+01	1.35	1E+01	1.28	1E+01
1383.9	0.900	Sr-92	3.73	1E+01	3.64	1E+01	3.58	1E+01	3.56	1E+01	3.49	1E+01	3.36	1E+01	3.22	1E+01
1384.3	0.243	Ag-110m	4.59		4.52		4.44		4.42		4.33		4.19		4.01	
1408.0	0.209	Eu-152	9.81	15:01	9.58	15+01	9.43	15:01	9.42	15+01	9.21	15+01	8.90	15+01	8.53	15101
1435.9	0.703	I-135	3.06	IE+01	2.98	IE+01	2.95	15+01	2.93	12+01	2.86	1E+01	2.77	IE+01	2.66	1E+01
1460.8	0.107	K-40	3.88	1E+01	3.79	1E+01	3.74	1E+01	3.72	1E+01	3.64	1E+01	3.51	1E+01	3.34	1E+01
1465.1	0.222	Pm-148	2.09	1E+01	2.05	1E+01	2.01	1E+01	2.00	1E+01	1.96	1E+01	1.90	1E+01	1.83	1E+01
1481.8	0.235	Ni-65	2.40	1E+01	2.33	1E+01	2.30	1E+01	2.29	1E+01	2.24	1E+01	2.17	1E+01	2.08	1E+01
1505.0	0.131	Ag-110m	2.50	45.04	2.45	45.04	2.42	45.04	2.41	45.04	2.36	15.01	2.29	45.04	2.20	45.04
1524.6	0.189	K-42	3./3	1E+01	3.65	1E+01	3.60	1E+01	3.59	1E+01	3.51	1E+01	3.39	1E+01	3.25	1E+01
1678.0	0.096	I-135	3.42	12.01	3.34		3.30	12.01	3.29	12:01	3.22	12.01	3.13	12.01	3.01	12.01
1691.0	0.488	Sb-124	1.46	1E+01	1.43	1E+01	1.41	1E+01	1.41	1E+01	1.38	1E+01	1.34	1E+01	1.29	1E+01
1736.5	0.060	Sb-129	2.21		2.18		2.15		2.15		2.10		2.05		1.97	
1771.4	0.155	Co-56	2.67		2.62		2.60		2.59		2.55		2.47		2.37	
1791.2	0.078	I-135 Mr-56	2.78		2.72		2.69		2.67		2.63		2.55		2.46	
1897.6	0.272	Br-84	9.24 5.18		9.03 5.08		6.94 5.02		0.00 4 99		0.73 490		0.53 4 77		0.17 4.57	
1901.3	0.072	La-142	1.89		1.84		1.83		1.82		1.78		1.73		1.66	
2091.0	0.056	Sb-124	1.72		1.69		1.66		1.67		1.63		1.60		1.54	
2113.0	0.143	Mn-56	4.96		4.86		4.82		4.79		4.71		4.63		4.45	
2218.0	0.152	Cs-138	3.83		3.75		3.72		3.70		3.65		3.56		3.43	
23978 2484 1	0.133	La−142 Br-84	3.58		3.52 2.20		3.48 2.27		3.4/		3.41 2.22		3.33		3.23	
2542.7	0.100	La-142	2. 4 3 2.71		2.59		2.37		2.30		2.55		2.27		2.20	
2598.6	0.167	Co-56	2.99		2.97		2.96		2.95		2.90		2.84		2.76	
2639.6	0.076	Cs-138	1.96		1.93		1.91		1.90		1.88		1.84		1.79	
2754.0	0.999	Na-24	1.63	1E+01	1.61	1E+01	1.59	1E+01	1.58	1E+01	1.56	1E+01	1.53	1E+01	1.48	1E+01
3253.5	0.074	Co-56	1.35		1.35		1.35		1.34		1.33		1.30		1.28	
3927.5	0.068	Br−84	2.61		2.58		2.55		2.55		2.53		2.49		Z.44	

単位 : (cm⁻²・s⁻¹) / (μGy/h)

エネルギー	放出比				放射性物	勿質のℲ	宝壌中に	おける釘	鉛直分布	「を表す	パラメー	- <i>γ</i> β	} (g•	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	3.	0	5.	0	1	0	2	0	3	C	5	0	10	00
11.2	0.255	Pb-210	2.27	1E+01	2.12	1E+01	1.98	1E+01	1.90	1E+01	1.87	1E+01	1.85	1E+01	1.83	1E+01
12.7	0.081	Th-232	4.91	1E+01	4.71	1E+01	4.46	1E+01	4.29	1E+01	4.21	1E+01	4.14	1E+01	4.09	1E+01
12./	0.089	1 n-228	1.05	1E+01	1.35	1E+01	1.U/ 6.12	1E+01	9.03	15+01	8.47	15+01	7.98	15+01	7.57	15+01
13.4	0.079	U=230	6 39	1E+01	6.29	1E+01	6.16	1E+01	6.04	1E+01	5.99 6.02	1E+01	6.01	1E+01	5.92	1E+01
13.4	0.004	U-234	6.11	1E+01	5.25	1E+01	5.80	1E+01	5.67	1E+01	5 58	1E+01	5.54	1E+01	5.54	1E+01
13.4	0.102	U-232	5.55	1E+01	5.31	1E+01	4.98	1E+01	4.73	1E+01	4.63	1E+01	4.55	1E+01	4.47	1E+01
13.7	0.094	Th-234	8.27		6.74		5.39		4.61		4.36		4.14		3.98	
13.7	0.562	Np-237	1.41	1E+01	1.17	1E+01	9.50		8.20		7.78		7.37		7.07	
13.7	0.776	Th-231	2.73	1E+01	2.40	1E+01	2.07	1E+01	1.85	1E+01	1.77	1E+01	1.71	1E+01	1.65	1E+01
14.1	0.040	Pu-239	6.51	1E+01	6.28	1E+01	5.93	1E+01	5.66	1E+01	5.55	1E+01	5.39	1E+01	5.29	1E+01
14.1	0.082	Pu-242	7.48	1E+01	7.50	1E+01	7.48	1E+01	7.47	1E+01	7.44	1E+01	7.43	1E+01	7.43	1E+01
14.1	0.089	Pu-240	7.44	1E+01	7.45	1E+01	7.39	1E+01	7.35	1E+01	7.37	1E+01	7.31	1E+01	7.30	1E+01
14.1	0.102	Pu-236	7.40	1E+01	7.47	1E+01	7.44	1E+01	7.40	1E+01	7.40	1E+01	6.98	1E+01	6.93	1E+01
14.4	0.365	Am-241	1.37	1E+01	1.18	1E+01	1.02	1E+01	9.18	12.01	8.87	12.01	8.57	12.01	8.39	12.01
14.4	0.575	U-237	3.49		2.71		2.05		1.68		1.55		1.44		1.36	
14.8	0.081	Cm-244	8.25	1E+01	8.25	1E+01	8.23	1E+01	8.20	1E+01	8.19	1E+01	8.17	1E+01	8.14	1E+01
14.8	0.085	Cm-242	8.18	1E+01	8.21	1E+01	8.17	1E+01	8.13	1E+01	8.13	1E+01	8.06	1E+01	8.06	1E+01
14.8	0.098	Am-242	5.82		4.70		3.69		3.13		2.95		2.76		2.64	
14.8	0.461	Cm-243	3.05		2.33		1.71		1.37		1.26		1.16		1.08	
14.8	0.4/1	Cm-245	4./8	15+01	3./5	15+01	2.83	15.01	2.34	15:01	2.1/	15+01	2.02	15+01	1.91	15+01
15.Z	0.273	$\Delta m = 242m$	1 15	1E+01	9.30	15-01	7.20	1E+01	6 1 9	1E+01	0.90	1E+01	0.07 5.49	1E+01	5.26	IETUI
16.5	0.183	Mo-93	3 15	1E+01	3.16	1F+01	3.15	1E+01	3.14	1F+01	3.14	1F+01	3.15	1E+01	3.16	1F+01
16.6	0.060	Nb-93m	6.17	1E+01	6.16	1E+01	6.18	1E+01	6.16	1E+01	6.16	1E+01	6.16	1E+01	6.19	1E+01
16.6	0.350	Mo-93	6.12	1E+01	6.14	1E+01	6.15	1E+01	6.12	1E+01	6.12	1E+01	6.12	1E+01	6.15	1E+01
18.6	0.090	Mo-93	2.19	1E+01	2.20	1E+01	2.22	1E+01	2.20	1E+01	2.21	1E+01	2.21	1E+01	2.22	1E+01
20.1	0.184	Rh-103m	4.31	1E+01	4.31	1E+01	4.30	1E+01	4.25	1E+01	4.29	1E+01	4.26	1E+01	4.29	1E+01
20.2	0.349	Rh-103m	8.36	1E+01	8.41	1E+01	8.38	1E+01	8.31	1E+01	8.35	1E+01	8.35	1E+01	8.38	1E+01
22./	0.094	Rh-103m	3.33	1E+01	3.40	1E+01	3.44	1E+01	3.46	1E+01	3.48	1E+01	3.46	1E+01	3.49	1E+01
20.3 25.6	0.410	Sn-11/m Th-231	1.19	1E+01 1E+01	9.04	1E+01	2 90	1E+01	0.04	1E+01	2.01	1E+01	5.20 2.47	1E+01	4.90 2.41	1E+01
26.4	0.156	Sn-126	1.68	1E+01	1.42	1E+01	1.18	1E+01	1.04	1E+01	9.89	12.01	9.46	12.01	9.10	12.01
27.2	0.103	Te-127m	6.77	1E+01	6.70	1E+01	6.57	1E+01	6.46	1E+01	6.46	1E+01	6.39	1E+01	6.38	1E+01
27.2	0.127	Te-129m	1.67	1E+01	1.35	1E+01	1.03	1E+01	8.22		7.46		6.73		6.20	
27.2	0.327	Te-125m	6.79	1E+01	6.73	1E+01	6.67	1E+01	6.60	1E+01	6.63	1E+01	6.58	1E+01	6.57	1E+01
27.5	0.193	Te-127m	1.29	1E+02	1.28	1E+02	1.26	1E+02	1.24	1E+02	1.23	1E+02	1.22	1E+02	1.22	1E+02
27.5	0.237	Te-129m	3.18	1E+01	2.58	1E+01	1.96	1E+01	1.57	1E+01	1.42	1E+01	1.28	1E+01	1.18	1E+01
27.5	0.011	Te-125m	1.29	1E+02	1.29	1E+02	9.03	TE+02	6.21	1E+02	1.27	TE+02	1.20	1E+02	1.20	TE+02
29.4	0.150	Np-237	3 55	1E+01	3.11	1E+01	2.63	1E+01	2 32	1F+01	2 2 2	1F+01	2.11	1E+01	2.03	1F+01
29.5	0.185	I-129	6.95	1E+01	6.87	1E+01	6.73	1E+01	6.65	1E+01	6.68	1E+01	6.64	1E+01	6.59	1E+01
29.8	0.343	I-129	1.32	1E+02	1.30	1E+02	1.28	1E+02	1.26	1E+02	1.27	1E+02	1.26	1E+02	1.25	1E+02
30.6	0.092	Cs-134m	2.55	1E+01	2.18	1E+01	1.79	1E+01	1.55	1E+01	1.47	1E+01	1.38	1E+01	1.33	1E+01
31.0	0.067	Te-127m	5.75	1E+01	5.79	1E+01	5.75	1E+01	5.68	1E+01	5.73	1E+01	5.66	1E+01	5.63	1E+01
31.0	0.068	Te-129m	1.18	1E+01	9.67		7.45		6.01		5.46		4.93		4.55	
31.0	0.1/0	Cs-134m	4.83	1E+01	4.14	1E+01	3.41	1E+01	2.96	1E+01	2.80	1E+01	2.65	1E+01	2.54	1E+01
31.0	0.212	Ra-137m	5.76 2.37	1E+01	1.86	1E-01	1.38	1E-01	1.02	1E-01	9.71	1E-02	5.01 8.73	1E-02	5.60 8.04	1E-02
32.2	0.038	Ba-137m	4.47	1E-01	3.50	1E-01	2.60	1E-01	2.06	1E-01	1.84	1E-01	1.66	1E-01	1.52	1E-01
33.6	0.122	I-129	5.98	1E+01	6.07	1E+01	6.11	1E+01	6.14	1E+01	6.20	1E+01	6.18	1E+01	6.17	1E+01
35.0	0.050	Cs-134m	1.81	1E+01	1.59	1E+01	1.34	1E+01	1.18	1E+01	1.12	1E+01	1.07	1E+01	1.03	1E+01
35.5	0.067	Te-125m	2.37	1E+01	2.44	1E+01	2.51	1E+01	2.55	1E+01	2.58	1E+01	2.58	1E+01	2.59	1E+01
38.7	0.223	Nd-147	1.70	1E+01	1.42	1E+01	1.12	1E+01	9.26		8.51		7.83		7.28	
39.6	0.075	I-129	4.95	1E+01	5.14	1E+01	5.30	1E+01	5.40	1E+01	5.47	1E+01	5.48	1E+01	5.49	1E+01
43.U 50 5	0.118	⊏u−100 11_007	2.91	1E+01	2.58 1 0 7	1E+01	2.23	1E+01	2.00 כרי כי	1E+01	1.92 2.11	1E+01	1.84	1E+01	1./9	1E+01
59.5	0.340	0-237 Am-941	4.83	1E+02	4.27 3.06	1E+02	3.09 2 00	1E+01	3.21 201	1E+01	3.11 201	1E+02	2.90 2 20	1E+01	2.04 2.89	1E+02
64.3	0.096	Sn-126	4.04	1E+01	3.79	1E+01	3.48	1E+01	3.29	1E+01	3.19	1E+01	3.12	1E+01	3.06	1E+01
74.7	0.674	Am-243	3.15	1E+02	2.98	1E+02	2.81	1E+02	2.68	1E+02	2.62	1E+02	2.58	1E+02	2.55	1E+02
74.8	0.104	Pb-212	1.53	1E+01	1.35	1E+01	1.15	1E+01	1.00	1E+01	9.46		8.93		8.52	
77.1	0.176	Pb-212	2.61	1E+01	2.30	1E+01	1.96	1E+01	1.72	1E+01	1.62	1E+01	1.53	1E+01	1.46	1E+01
84.2	0.067	Th-231	7.93	1E+01	8.23	1E+01	8.36	1E+01	8.34	1E+01	8.31	1E+01	8.27	1E+01	8.22	1E+01
86.5	0.123	Np-237	1.05	1E+02	1.03	1E+02	9.92	1E+01	9.50	1E+01	9.38	1E+01	9.21	1E+01	9.04	1E+01

単位 : (cm⁻²・s⁻¹) / (μGy/h)

エネルギー	放出比	_)	放射性物	勿質の土	宝壌中に	おける釒	<u> </u>	「を表す	パラメー	$-\beta \beta$	(g•	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	3.	0	5.	0	10)	20	0	30)	50	0	10	0
86.5	0.309	Eu-155	1.39	1E+02	1.30	1E+02	1.21	1E+02	1.14	1E+02	1.12	1E+02	1.09	1E+02	1.07	1E+02
86.9	0.089	Sn-126	4.43	1E+01	4.26	1E+01	4.04	1E+01	3.87	1E+01	3.80	1E+01	3.75	1E+01	3.70	1E+01
87.6	0.370	Sn-126	1.84	1E+02	1.78	1E+02	1.68	1E+02	1.61	1E+02	1.59	1E+02	1.56	1E+02	1.54	1E+02
91.1	0.279	Na-147	4.07	1E+01	4.21	1E+01	3.02	101	3.17	1E+01	2.98	1E+01	2.81	1E+01	2.00	101
97.1	0.100	$D_{2} = 237$	3.03 1 71	1E+01	1.52	1E+01	2.50	1E+01	2.33	1E+01	1 09	1E+01	1.04	1E+01	9.88	1E+01
99.6	0.137	Cm-243	2 78	1E+01	2.53	1E+01	2.22	1E+01	2 00	1E+01	1.00	1E+01	1.04	1E+01	1 76	1F+01
99.6	0.157	Np-239	2.18	1E+01	1.97	1E+01	1.75	1E+01	1.58	1E+01	1.51	1E+01	1.44	1E+01	1.39	1E+01
99.6	0.185	Cm-245	5.34	1E+01	4.97	1E+01	4.51	1E+01	4.16	1E+01	4.05	1E+01	3.93	1E+01	3.81	1E+01
101.1	0.266	U-237	4.98	1E+01	4.62	1E+01	4.20	1E+01	3.84	1E+01	3.71	1E+01	3.59	1E+01	3.49	1E+01
103.8	0.059	Am-242	1.01	1E+02	9.77	1E+01	9.20	1E+01	8.74	1E+01	8.59	1E+01	8.41	1E+01	8.25	1E+01
103.8	0.236	Cm-243	4.49	1E+01	4.10	1E+01	3.61	1E+01	3.25	1E+01	3.11	1E+01	2.98	1E+01	2.87	1E+01
103.8	0.251	Np-239	3.53	1E+01	3.21	1E+01	2.84	1E+01	2.57	1E+01	2.45	1E+01	2.35	1E+01	2.26	1E+01
103.8	0.295	Cm-245	8.62	1E+01	8.08	1E+01	7.33	1E+01	6.77	1E+01	6.59	1E+01	6.42	1E+01	6.21	1E+01
105.3	0.206	Eu-155	1.00	1E+02	9.54	1E+01	9.01	1E+01	8.56	1E+01	8.41	1E+01	8.26	1E+01	8.17	1E+01
100.1	0.272	Np-239	3.85	1E+01	3.50	1E+01	3.10	1E+01	2.81	1E+01	2.68	1E+01	2.58	1E+01	2.48	1E+01
117.3	0.000	Se-75	1.90	1E+01	0.01	1E+01	8.62	15-01	7.68	15+01	7 3 2	IETUI	6.96	1E+01	6.65	1E+01
121.1	0.855	Co-57	1.10	1E+02	1 77	1F+02	1 60	1E+02	1 47	1E+02	1 43	1E+02	1.38	1E+02	1.35	1F+02
127.5	0.141	Cs-134m	1.49	1E+02	1.46	1E+02	1.39	1E+02	1.32	1E+02	1.30	1E+02	1.28	1E+02	1.26	1E+02
133.0	0.419	Hf-181	1.94	1E+01	1.75	1E+01	1.51	1E+01	1.32	1E+01	1.25	1E+01	1.18	1E+01	1.11	1E+01
133.5	0.111	Ce-144	1.66	1E+02	1.57	1E+02	1.45	1E+02	1.35	1E+02	1.32	1E+02	1.28	1E+02	1.26	1E+02
136.0	0.590	Se-75	3.87	1E+01	3.51	1E+01	3.07	1E+01	2.75	1E+01	2.62	1E+01	2.50	1E+01	2.39	1E+01
136.5	0.106	Co-57	2.47	1E+01	2.29	1E+01	2.07	1E+01	1.93	1E+01	1.87	1E+01	1.81	1E+01	1.77	1E+01
140.5	0.890	Tc-99m	1.96	1E+02	1.80	1E+02	1.62	1E+02	1.49	1E+02	1.44	1E+02	1.39	1E+02	1.36	1E+02
143.8	0.110	U-235	1.78	1E+01	1.63	1E+01	1.46	1E+01	1.33	1E+01	1.27	1E+01	1.23	1E+01	1.19	1E+01
145.4	0.484	Ce-141	1.79	1E+02	1.67	1E+02	1.51	1E+02	1.39	1E+02	1.35	1E+02	1.31	1E+02	1.27	1E+02
158.0	0.864	Sn-11/m	1.50	1E+02	1.40	1E+02	1.33	1E+02	1.23	1E+02	1.19	1E+02	1.15	1E+02	1.12	1E+02
162.6	0.640	Te=123m Ba=140	8.86	1E+02	8.04	1E+02	6.98	1E+02	6.11	1E+02	1.23 5.75	1E+02	5.43	1E+02	5 15	1E+02
165.9	0.002	Ba-139	1 48	1F+02	1 36	1F+02	1.21	1F+02	1 10	1F+02	1.06	1F+02	1.01	1F+02	9.77	1F+01
174.9	0.095	Cm-245	3.19	1E+01	3.05	1E+01	2.83	1E+01	2.68	1E+01	2.63	1E+01	2.57	1E+01	2.51	1E+01
181.1	0.061	Mo-99	1.10	1E+01	9.96		8.59		7.50		7.04		6.58		6.20	1E-02
185.7	0.572	U-235	9.88	1E+01	9.17	1E+01	8.24	1E+01	7.58	1E+01	7.33	1E+01	7.06	1E+01	6.87	1E+01
186.0	0.033	Ra-226	1.40	1E+02	1.28	1E+02	1.15	1E+02	1.06	1E+02	1.02	1E+02	9.78	1E+01	9.50	1E+01
202.5	0.958	Y-90m	4.16	1E+01	3.78	1E+01	3.32	1E+01	2.95	1E+01	2.82	1E+01	2.67	1E+01	2.54	1E+01
205.3	0.050	U-235	8.85		8.23		7.47		6.87		6.65		6.42		6.22	
208.0	0.216	U-237	4.86	1E+01	4.65	1E+01	4.35	1E+01	4.09	1E+01	4.01	1E+01	3.90	1E+01	3.83	1E+01
210.5	0.223	1e-134	7.28	15101	6.65	15+01	5./5	15:01	5.09	15+01	4.83	15+01	4.55	15+01	4.32	15.01
220.2 228.2	0.100	Um=243	2.40	1E+01	2.31	1E+01	2.11	1E+01	1.90	1E+01	1.90	1E+01	1.04	1E+01	1./0	1E+01
220.2	0.882	Te-132	1.12	1E+02	1.01	1E+02	9.50	1E+01	8.71	1E+01	8 42	1E+01	8.15	1E+01	7.87	1E+01
234.7	0.261	Nb-95m	1.15	1E+02	1.07	1E+02	9.67	1E+01	8.85	1E+01	8.56	1E+01	8.23	1E+01	7.93	1E+01
238.6	0.434	Pb-212	9.03	1E+01	8.41	1E+01	7.64	1E+01	6.97	1E+01	6.77	1E+01	6.54	1E+01	6.31	1E+01
241.0	0.040	Ra-224	1.14	1E+02	1.06	1E+02	9.33	1E+01	8.59	1E+01	8.25	1E+01	7.94	1E+01	7.64	1E+01
264.7	0.591	Se-75	4.53	1E+01	4.22	1E+01	3.77	1E+01	3.46	1E+01	3.34	1E+01	3.23	1E+01	3.11	1E+01
266.9	0.068	Y-93	2.41	1E+01	2.19	1E+01	1.90	1E+01	1.64	1E+01	1.53	1E+01	1.43	1E+01	1.33	1E+01
275.2	0.068	Pm-151	6.15		5.68		5.05		4.57		4.36		4.16		3.98	
277.6	0.140	Cm-243	3.40	1E+01	3.22	1E+01	2.96	1E+01	2.76	1E+01	2.68	1E+01	2.62	1E+01	2.54	1E+01
277.0	0.144	Np-239	2.58	1E+01	2.43	1E+01	2.24	1E+01	2.11	1E+01	2.04	1E+01	1.99	1E+01	1.94	1E+01
278.0	0.209	Se-75	1.22	1E+01	1.82	1E+01	1 64	1E+01	1.51	1E+01	1 4 5	1E+01	4.72	1E+01	1.35	1E+01
285.9	0.001	Pm-149	7.88	1E+01	7.28	1E+01	6 4 6	1E+01	5.84	1E+01	5 60	1E+01	5.34	1E+01	5.12	1E+01
293.3	0.420	Ce-143	4.76	1E+01	4.42	1E+01	3.97	1E+01	3.61	1E+01	3.43	1E+01	3.28	1E+01	3.15	1E+01
300.1	0.066	Pa-233	9.53		8.94		8.05		7.38		7.09		6.89		6.62	
306.1	0.051	Rh-105	1.96	1E+01	1.82	1E+01	1.62	1E+01	1.47	1E+01	1.41	1E+01	1.36	1E+01	1.30	1E+01
312.0	0.386	Pa-233	5.58	1E+01	5.24	1E+01	4.74	1E+01	4.34	1E+01	4.18	1E+01	4.06	1E+01	3.90	1E+01
314.1	0.610	Sb-128	6.02		5.51		4.86		4.30		4.06		3.83		3.64	
318.9	0.192	Rh-105	7.43	1E+01	6.87	1E+01	6.11	1E+01	5.58	1E+01	5.35	1E+01	5.16	1E+01	4.95	1E+01
320.1	0.098	Cr-51	9.30	1E+01	8.63	1E+01	7.70	1E-01	7.01	1E+01	6.76	1E+01	6.46	1E+01	6.23	1E+01
330.9 240 1	0.780	00-130 Dm-151	7.5Z	16+01	0.89	15-01	0.04	15101	0.30 1.64	15201	5.U/ 157	15-01	4./6	15-01	4.51	16101
340.1	0.220	Cs-136	2.10 6.20	15-01	2.00 5.01	15401	1./9 5.10	ICTUI	1.04 1/10	10+01	1.3/ 1.20	15401	1.3U 2.02	10+01	1.44 2.75	IETUI
342.1	0.067	Ag-111	7.69	1E+01	7.15	1E+01	6.36	1E+01	5.85	1E+01	5.61	1E+01	5.40	1E+01	5.18	1E+01
344.3	0.266	Eu-152	7.63	,	6.98		6.12		5.40		5.06		4.78	01	4.50	

単位 : (cm⁻²・s⁻¹) / (µGy/h)

エネルギー	放出比			ţ	放射性物	物質の土	:壌中に	おける釒	沿直分布	「を表す	パラメ・	-タ β	(g •	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	3. ()	5.	0	10	0	20	0	3	C	5	0	10	0
345.9	0.120	Hf-181	6.95		6.49		5.81		5.27		5.06		4.83		4.65	
364.5	0.812	I-131	6.56	1E+01	6.10	1E+01	5.45	1E+01	4.97	1E+01	4.72	1E+01	4.54	1E+01	4.37	1E+01
400.7	0.116	Se-75	9.73		9.17		8.38		7.82		7.56		7.36		7.16	
402.5	0.690	Cm-247	7.17	1E+01	6.69	1E+01	6.00	1E+01	5.49	1E+01	5.27	1E+01	5.05	1E+01	4.87	1E+01
414.8	0.833	Sb-126	9.76	15.01	9.02	15.01	8.01	15.01	7.24	15.01	6.86	15.01	6.48	15.01	6.22	15.01
417.9	0.010	1e-12/	6.44 5.14	1E+01	0.03	1E+01	5.41	1E+01	4.90	1E+01	4./3	1E+01	4.55	1E+01	4.41	1E+01
410.0	0.341	I-130 Sh-125	2 20	1E+01	4.70 2.06	1E+01	4.24	1E+01	1 69	1E+01	1.62	1E+01	0.44 1.54	1E+01	1 4 8	1E+01
435 1	0.234	Te-134	7 11		6.67	12.01	5.93	12.01	5 43	12.01	5 1 9	12.01	4.96	12.01	4 76	12.01
438.6	0.949	Zn-69m	7.28	1E+01	6.80	1E+01	6.12	1E+01	5.57	1E+01	5.33	1E+01	5.12	1E+01	4.93	1E+01
459.6	0.074	Te-129	4.18	1E+01	3.95	1E+01	3.57	1E+01	3.28	1E+01	3.15	1E+01	3.00	1E+01	2.88	1E+01
461.0	0.099	Te-134	3.83		3.61		3.22		2.95		2.83		2.69		2.60	
462.8	0.307	Cs-138	4.74		4.37		3.83		3.38		3.16		2.96		2.78	
463.4	0.105	Sb-125	7.97		7.47		6.74		6.17		5.94		5.63		5.45	
469.4	0.175	Ru-105	7.88		7.35		6.58		5.97		5.70		5.42		5.18	
473.0	0.247	Sb-127	1.23	1E+01	1.16	1E+01	1.03	1E+01	9.38		8.98		8.52		8.22	
477.6	0.103	Be-7	6.82	1E+01	6.41	1E+01	5.76	1E+01	5.26	1E+01	5.05	1E+01	4.82	1E+01	4.67	1E+01
4/9.5 470 F	0.253	W-187	1.00	1E+01	1.50	1E+01	1.40	1E+01	1.28	1E+01	1.23	1E+01	1.10	1E+01	1.12	1E+01
4/9.0	0.900	1-90m Hf-191	4.75	1E+01	4.45	1E+01	4.00	1E+01	3./Z	1E+01	3.39	1E+01	3.40 2.91	1E+01	3.30	1E+01
487.0	0.050	la-140	7 23		6.69		5.89	12.01	5.23	12.01	4.92	1L-01	4 59	IL OI	4 33	12.01
497.1	0.889	Ru-103	6.05	1E+01	5.69	1E+01	5.13	1E+01	4.68	1E+01	4.50	1E+01	4.28	1E+01	4.16	1E+01
507.7	0.053	Zr-97	9.72		9.07		8.09		7.26		6.86		6.47		6.19	
511.0	0.301	Co-58	1.06	1E+01	9.88		8.85		8.00		7.61		7.18		6.92	
511.0	1.810	Na-22	2.89	1E+01	2.69	1E+01	2.40	1E+01	2.16	1E+01	2.05	1E+01	1.93	1E+01	1.85	1E+01
511.9	0.207	Rh-106	3.36	1E+01	4.34	1E+01	2.82	1E+01	2.57	1E+01	2.45	1E+01	2.33	1E+01	2.25	1E+01
526.5	0.450	Sb-128	5.00		4.67		4.19		3.80		3.65		3.44		3.31	
529.9	0.863	I-133	4.84	1E+01	4.55	1E+01	4.07	1E+01	3.71	1E+01	3.56	1E+01	3.39	1E+01	3.26	1E+01
531.0	0.131	Nd-147	3.43	1E+01	3.31	1E+01	3.08	1E+01	2.90	1E+01	2.81	1E+01	2.73	1E+01	2.65	1E+01
536.1	0.990	I-130 Re-140	1.58	1E+01	1.48	1E+01	1.33	1E+01	1.22	1E+01	1.1/	1E+01	1.10	1E+01	1.06	1E+01
537.3 544 7	0.244	Ba-140 Sh-120	4.57	1E+01	4.34	1E+01	3.93	1E+01	3.01	1E+01	3.47	1E+01	3.34 2.05	IE+01	3.23 2.20	1E+01
550.3	0.173	Pm-148	1.39	1E+01	1.30	1E+01	1 16	1F+01	1.03	1E+01	9.80		9.21		8.81	
550.3	0.944	Pm-148m	1.64	1E+01	1.53	1E+01	1.38	1E+01	1.26	1E+01	1.21	1E+01	1.15	1E+01	1.11	1E+01
551.5	0.059	W-187	3.97		3.76		3.40		3.12		3.00		2.87		2.77	
555.6	0.949	Y-91m	6.13	1E+01	5.73	1E+01	5.19	1E+01	4.75	1E+01	4.56	1E+01	4.36	1E+01	4.21	1E+01
566.0	0.183	Te-134	7.44		7.01		6.35		5.88		5.64		5.42		5.23	
569.3	0.150	Cs-134	3.36		3.15		2.84		2.58		2.47		2.35		2.25	
600.6	0.178	Sb-125	1.44	1E+01	1.36	1E+01	1.24	1E+01	1.15	1E+01	1.11	1E+01	1.06	1E+01	1.03	1E+01
602.7	0.979	Sb-124	1.98	1E+01	1.85	1E+01	1.65	1E+01	1.48	1E+01	1.40	1E+01	1.33	1E+01	1.25	1E+01
604.6	0.975	Cs-134	2.22	1E+01	2.08	1E+01	1.88	1E+01	1./1	1E+01	1.64	1E+01	1.56	1E+01	1.50	1E+01
000.0 610.2	0.050	SD-123	4.00		3.84 2.76		3.32		3.20		3.15		3.01		2.91	
618.4	0.050	Ku-103 W-187	3.97 5.03		3.70 4.76		3.43 4 34		3.14 4.01		3.04		2.92		2.04	
621.8	0.098	Rh-106	1.66	1E+01	2.15	1E+01	1.41	1E+01	1.29	1E+01	1.25	1E+01	1.19	1E+01	1.15	1E+01
628.7	0.310	Sb-128	3.57		3.35		3.05		2.78		2.68		2.55		2.45	
630.0	0.886	Pm-148m	1.58	1E+01	1.48	1E+01	1.35	1E+01	1.24	1E+01	1.20	1E+01	1.14	1E+01	1.09	1E+01
635.9	0.113	Sb-125	9.26		8.78		8.03		7.46		7.20		6.91		6.69	
636.2	0.360	Sb-128	4.17		3.91		3.54		3.24		3.12		2.97		2.85	
637.0	0.073	I-131	6.69		6.33		5.78		5.42		5.24		5.06		4.92	
641.3	0.474	La-142	8.28		7.67		6.78		6.04		5.65		5.27		4.92	
647.5	0.194	Te-133m	3.91	15.01	3.69	15.01	3.32	45.04	3.02		2.88		2.72		2.61	
657.7	0.947	Ag-110m	1.27	1E+01	1.19	1E+01	1.07	1E+01	9.78	15+01	9.36	15+01	8.88	15,01	8.46	15:01
661 6	0.903	שי-שוי Ba-137m	5.20 5.37	1E+01	4.94 5.05	1E+01	4.49 4.60	1E+01	4.10 1 22	1E+01	৩.৩୪ ১.৩১	1E+01	3.01 3.00	1E+01	3.00 3.75	1E+01
664.5	0.053	Ce-143	7 14	12.01	6.84	12.01	6.34	12.01	4.23 6.00	12.01	00 5 80	12.01	5.62	12.01	5 48	12.01
666.3	0.997	Sb-126	1.30	1E+01	1.22	1E+01	1.11	1E+01	1.03	1E+01	9.83		9.40		9.04	
667.7	0.987	I-132	1.59	1E+01	1.49	1E+01	1.35	1E+01	1.23	1E+01	1.18	1E+01	1.13	1E+01	1.08	1E+01
668.5	0.961	I-130	1.61	1E+01	1.52	1E+01	1.38	1E+01	1.28	1E+01	1.23	1E+01	1.17	1E+01	1.12	1E+01
676.4	0.157	Ru-105	7.63		7.19		6.55		6.05		5.83		5.58		5.35	
685.7	0.353	Sb-127	1.91	1E+01	1.81	1E+01	1.65	1E+01	1.52	1E+01	1.47	1E+01	1.41	1E+01	1.36	1E+01
685.8	0.316	W-187	2.24	1E+01	2.13	1E+01	1.94	1E+01	1.81	1E+01	1.75	1E+01	1.68	1E+01	1.62	1E+01
695.0	0.997	Sb-126	1.31	1E+01	1.14	1E+01	1.12	1E+01	1.04	1E+01	1.00	1E+01	9.57		9.20	
697.0	0.289	Sb-126	3.81		3.58		3.26		3.02		2.90		2.77		2.67	

単位 : (cm⁻²・s⁻¹) / (µGy/h)

エネルギー	放出比			į	放射性特	勿質の土	:壌中に	おける釒	台直分布	jを表す	パラメ・	$-\beta$ β	(g •	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	3. ()	5.	0	1	0	2	0	3	0	5	0	10	0
720.5	0.538	Sb-126	7.15		6.74		6.14		5.70		5.46		5.22		5.04	
722.0	0.051	Ce-143	7.08		6.80		6.34		6.00		5.84		5.67		5.53	
723.3	0.197	Eu-154	6.15		5.83		5.28		4.81		4.60		4.38		4.20	
/24.2	0.444	Zr-95	2.22	1E+01	2.09	1E+01	1.90	1E+01	1./5	1E+01	1.68	1E+01	1.61	1E+01	1.55	1E+01
724.3	0.4/3	Ru-105	2.35	1E+01	2.21	1E+01	2.03	1E+01	1.8/	1E+01	1.80	1E+01	1./3	1E+01	1.00	1E+01
723.7	0.327	Pm=140m Bi=212	0.02	1E+01	2.00	1E+01	2.06	1E+01	4.01	1E+01	4.05	1E+01	4.45	1E+01	4.29	1E+01
739.5	0.000	Mo-99	3 05	1E+01	2.23	1E+01	2.00	1E+01	2.45	1E+01	2.36	1E+01	2.27	1E+01	2.18	1E-01
739.5	0.823	I-130	1.41	1E+01	1.33	1E+01	1.22	1E+01	1.13	1E+01	1.09	1E+01	1.04	1E+01	1.00	1E+01
742.6	0.151	Te-134	6.50		6.22		5.69		5.33		5.16		4.99		4.83	
743.3	1.000	Sb-128	1.20	1E+01	1.13	1E+01	1.03	1E+01	9.49		9.17		8.77		8.46	
748.3	0.008	Pr-145	1.11	1E+01	1.05	1E+01	9.56		8.76		8.36		8.05		7.71	
754.0	1.000	Sb-128	1.20	1E+01	1.13	1E+01	1.04	1E+01	9.57		9.22		8.85		8.52	
756.7	0.549	Zr-95	2.77	1E+01	2.61	1E+01	2.39	1E+01	2.19	1E+01	2.11	1E+01	2.03	1E+01	1.95	1E+01
763.9	0.224	Ag-110m	3.10	1 . 01	2.91	15.01	2.65	15.01	2.43	15.01	2.33	15.01	2.22	15.01	2.13	15.01
/05.8 767.0	1.000	ND-95	4.90	1E+01	4.03	1E+01	4.21	1E+01	3.87	1E+01	3.74	1E+01	3.55	1E+01	3.42	1E+01
772.6	0.290	I=134	1.20	1E+01	1.20	1E+01	1.10	1E+01	1.04	1E+01	9.65	15+01	9.71		9.4Z 8.83	
773.7	0.382	Te-131m	1.23	1E+01	9.75	12.01	8 85	12.01	8.12	12.01	7.82		7 47		7.16	
778.9	0.130	Eu-152	4.47		4.21		3.84		3.51		3.36		3.22		3.08	
783.7	0.145	Sb-127	8.09		7.69		7.07		6.56		6.33		6.10		5.91	
793.4	1.000	Sb-130	1.17	1E+01	1.11	1E+01	1.01	1E+01	9.33		9.00		8.60		8.30	
793.8	0.139	Te-131m	3.76		3.56		3.25		2.97		2.87		2.74		2.63	
795.8	0.851	Cs-134	2.06	1E+01	1.94	1E+01	1.78	1E+01	1.64	1E+01	1.59	1E+01	1.52	1E+01	1.47	1E+01
810.8	0.994	Co-58	3.87	1E+01	3.65	1E+01	3.35	1E+01	3.09	1E+01	2.98	1E+01	2.86	1E+01	2.76	1E+01
811.8	0.103	Eu-156	3.16	15.01	2.97	15.01	2.68		2.42		2.31		2.19		2.08	
812.8 915.9	0.430	SD-129	1.10	1E+01	1.09	1E+01	9.94		9.08		8.09		8.29 2.00		7.90	
818.5	0.230	Cs-136	1.83	1E+01	1 72	1E+01	1 57	1E+01	1 44	1E+01	1.39	1E+01	1.33	1E+01	1 28	1E+01
834.8	1.000	Mn-54	4.62	1E+01	4.37	1E+01	3.99	1E+01	3.68	1E+01	3.54	1E+01	3.39	1E+01	3.26	1E+01
839.4	1.000	Sb-130	1.19	1E+01	1.13	1E+01	1.03	1E+01	9.51		9.20		8.82		8.52	
841.6	0.146	Eu-152m	1.96	1E+01	1.86	1E+01	1.71	1E+01	1.59	1E+01	1.53	1E+01	1.46	1E+01	1.41	1E+01
846.8	0.989	Mn-56	2.41	1E+01	2.27	1E+01	2.06	1E+01	1.87	1E+01	1.79	1E+01	1.69	1E+01	1.60	1E+01
846.8	0.999	Co-56	1.25	1E+01	1.17	1E+01	1.06	1E+01	9.51		9.07		8.51		8.13	
847.0	0.954	I-134	1.44	1E+01	1.36	1E+01	1.24	1E+01	1.14	1E+01	1.09	1E+01	1.05	1E+01	1.00	1E+01
852.2	0.206	le-131m	5./2		5.42		4.95		4.55		4.40		4.21		4.05	
800.7 864.0	0.170	50-120 Te-133m	2.44 3.38		2.31		2.13		2.69		1.9Z 2.50		1.84		1.79	
873.2	0.130	Fu-154	3.30		3.15		3.28		3.01		2.55		2.40		2.57	
881.6	0.420	Br-84	1.06	1E+01	9.93		8.94		8.01		7.56		7.12		6.72	
884.1	0.649	I-134	9.87		9.34		8.57		7.85		7.59		7.25		6.98	
884.7	0.729	Ag-110m	1.05	1E+01	9.89		9.09		8.36		8.07		7.72		7.43	
889.3	1.000	Sc-46	1.99	1E+01	1.88	1E+01	1.72	1E+01	1.58	1E+01	1.52	1E+01	1.45	1E+01	1.39	1E+01
911.3	0.290	Ac-228	1.22	1E+01	1.15	1E+01	1.06	1E+01	9.76		9.39		9.00		8.69	
912.7	0.550	Te-133m	1.21	1E+01	1.14	1E+01	1.05	1E+01	9.73		9.38		8.93		8.62	
914.6	0.200	Sb-129 To-122m	5.54		5.27		4.83		4.43		4.26		4.07		3.93	
914.8	0.109	1e-133m Dm-149	2.39 8.16		Z.Z/ 7.71		2.08		6.45		1.80		5.03		1./1 5.70	
914.0 915.3	0.113	Pm-148m	3.33		317		2.93		2 74		2.67		2.57		2 4 9	
934.5	0.139	Y-92	2.23	1E+01	2.12	1E+01	1.94	1E+01	1.78	1E+01	1.72	1E+01	1.64	1E+01	1.58	1E+01
934.9	0.190	Sb-130	2.32		2.21		2.04		1.89		1.84		1.76		1.70	
937.5	0.343	Ag-110m	5.01		4.74		4.35		4.04		3.90		3.73		3.61	
954.5	0.181	I-132	3.17		2.98		2.77		2.57		2.49		2.40		2.32	
963.3	0.120	Eu-152m	1.67	1E+01	1.59	1E+01	1.48	1E+01	1.38	1E+01	1.33	1E+01	1.28	1E+01	1.24	1E+01
964.1	0.145	Eu-152	5.26		5.00		4.62		4.27		4.11		3.94		3.82	
964.8	0.055	Ac-228	2.32		2.20		2.03		1.88		1.81		1.74		1.68	
900.4 060.2	0.077	30-129 Ac-220	2.16		2.05		1.89		1./4		1.08 5.01		1.60		1.55 5./1	
909.2 924 5	0.175 0.279	AC-228 Nn-938	7.44 1.77	1E+01	7.04 1.60	1F+01	0.03	1E+01	0.02	1E+01	ט. 1 20	1E+01	0.09 1 22	1E+01	0.41 1 97	1F+01
996.3	0.103	Eu-154	3 49	12.01	3 33		3.08	12.01	2.85	12.01	2.75	12.01	2 64	12.01	2.56	12.01
1004.8	0.174	Eu-154	5.91		5.64		4.91		4.82		4.67		4.48		4.34	
1009.8	0.298	Cs-138	5.53		5.21		4.80		4.35		4.16		3.97		3.79	
1013.8	0.202	Pm-148m	4.05		3.86		3.59		3.38		3.30		3.18		3.11	
1025.9	0.096	Np-238	6.18		5.90		5.43		5.00		4.84		4.63		4.48	
1028.5	0.203	Np-238	1.31	1E+01	1.25	1E+01	1.15	1E+01	1.06	1E+01	1.02	1E+01	9.82		9.47	

単位 : (cm⁻²・s⁻¹) / (µGy/h)

エネルギー	放出比				放射性物	物質の土	:壌中に	おける針	沿直分布	「を表す	パラメー	-タ β	(g •	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	3.	0	5.	0	10	0	2	0	3	0	5	0	10	0
1030.1	0.126	Sb-129	3.58		3.42		3.16		2.92		2.82		2.70		2.61	
1038.8	0.080	I-135	2.18		2.06		1.89		1.73		1.67		1.59		1.52	
1048.1	0.798	Cs-136	1.55	1E+01	1.48	1E+01	1.37	1E+01	1.27	1E+01	1.23	1E+01	1.19	1E+01	1.15	1E+01
1076.6	0.150	I-134 Dh-96	2.38	15+01	2.29	15+01	2.11	15+01	1.90	15+01	2.06	15+01	1.82	15+01	1.//	15+01
1070.0	0.088	Fu-152	3.94	1E+01	3.73	1E+01	3.45	15+01	3.10	15+01	2 94	15+01	2.95	1E+01	2.04	12+01
1099.2	0.565	Fe-59	2.05	1E+01	1.94	1E+01	1.80	1E+01	1.66	1E+01	1.59	1E+01	1.52	1E+01	1.47	1E+01
1112.1	0.136	Eu-152	5.09		4.86		4.53		4.21		4.07		3.92		3.82	
1115.5	0.148	Ni-65	1.19	1E+01	1.12	1E+01	1.04	1E+01	9.55		9.14		8.78		8.45	
1115.5	0.507	Zn-65	3.72	1E+01	3.55	1E+01	3.28	1E+01	3.03	1E+01	2.93	1E+01	2.80	1E+01	2.72	1E+01
1120.5	1.000	Sc-46	2.11	1E+01	2.01	1E+01	1.86	1E+01	1.73	1E+01	1.67	1E+01	1.60	1E+01	1.56	1E+01
1121.3	0.349	Ta-182	1.17	1E+01	1.12	1E+01	1.05	1E+01	9.65		9.35		9.02		8.71	
1125.5	0.114	I=135	5.39 6.30		5.25 5.98		5.01		2.01 5.09		2.73 4.88		2.04 4.68		2.50	
1153.5	0.071	Fu-156	2 37		2.26		2.08		1.92		1.84		1.76		1.69	
1157.5	0.113	I-130	2.16		2.07		1.94		1.84		1.80		1.74		1.70	
1173.2	0.999	Co-60	1.76	1E+01	1.67	1E+01	1.55	1E+01	1.43	1E+01	1.37	1E+01	1.32	1E+01	1.27	1E+01
1189.0	0.164	Ta-182	5.59		5.36		5.00		4.64		4.49		4.34		4.22	
1204.9	0.003	Y-91	3.66	1E+01	3.48	1E+01	3.24	1E+01	3.00	1E+01	2.88	1E+01	2.78	1E+01	2.68	1E+01
1206.6	0.098	Te-131m	2.94		2.81		2.63		2.47		2.39		2.31		2.26	
1221.4	0.273	1a-182 Eu-156	9.34		9.00		8.43		7.82 2.45		1.57		7.33		7.11 2.10	
1230.7	0.003	Ta-182	3.00		3.81		3.56		3.31		3.21		3 11		3.01	
1235.4	0.200	Cs-136	4.05		3.86		3.62		3.41		3.30		3.20		3.12	
1238.3	0.670	Co-56	9.14		8.69		8.00		7.39		7.07		6.76		6.52	
1242.4	0.067	Eu-156	2.27		2.17		2.01		1.86		1.79		1.71		1.65	
1260.4	0.289	I-135	8.20		7.80		7.26		6.75		6.47		6.22		5.99	
1274.4	0.355	Eu-154	1.27	1E+01	1.22	1E+01	1.14	1E+01	1.07	1E+01	1.04	1E+01	1.01	1E+01	9.86	
12/4.5	0.999	Na-22	1.96	1E+01	1.88	1E+01	1.//	1E+01	1.67	1E+01	1.62	1E+01	1.56	1E+01	1.52	1E+01
1291.0	1 000	ге-59 Со-60	1.02	1E+01	1.55	1E+01	1.45	1E+01	1.50	1E+01	1.30	1E+01	1.25	1E+01	1.21	1E+01
1354.5	0.026	La-141	2.85	1E+01	2.72	1E+01	2.52	1E+01	2.35	1E+01	2.25	1E+01	2.17	1E+01	2.09	1E+01
1368.6	1.000	Na-24	1.24	1E+01	1.17	1E+01	1.08	1E+01	9.87		9.34		8.92		8.50	
1383.9	0.900	Sr-92	3.11	1E+01	2.98	1E+01	2.77	1E+01	2.58	1E+01	2.49	1E+01	2.40	1E+01	2.32	1E+01
1384.3	0.243	Ag-110m	3.89		3.74		3.50		3.35		3.24		3.15		3.08	
1408.0	0.209	Eu-152	8.29		7.99		7.52		7.13		6.90		6.72		6.58	
1435.9	0.763	Cs-138	1.53	1E+01	1.4/	1E+01	1.37	1E+01	1.28	1E+01	1.22	1E+01	1.19	1E+01	1.15	1E+01
1457.0	0.067	I-135 K-40	2.07	1E+01	2.40	1E+01	2.30	1E+01	2.17	1E+01	2.00	1E+01	2.01	1E+01	2.43	1E+01
1465.1	0.222	Pm-148	1.77	1E+01	1.70	1E+01	1.59	1E+01	1.51	1E+01	1.46	1E+01	1.42	1E+01	1.39	1E+01
1481.8	0.235	Ni-65	2.02	1E+01	1.93	1E+01	1.80	1E+01	1.70	1E+01	1.63	1E+01	1.58	1E+01	1.53	1E+01
1505.0	0.131	Ag-110m	2.14		2.06		1.94		1.86		1.81		1.76		1.73	
1524.6	0.189	K-42	3.14	1E+01	3.00	1E+01	2.80	1E+01	2.63	1E+01	2.52	1E+01	2.43	1E+01	2.35	1E+01
1596.2	0.954	La-140	1.98	1E+01	1.90	1E+01	1.78	1E+01	1.69	1E+01	1.63	1E+01	1.58	1E+01	1.54	1E+01
16/8.0	0.096	I-135 Sh-124	2.93	15+01	2.81	15+01	2.65	15+01	2.52	15+01	2.42	15+01	2.35	15+01	2.29	15+01
1736.5	0.488	Sb-124 Sb-129	1.23	1E+01	1.21	1E+01	1.14	15+01	1.09	15+01	1.05	15+01	1.03	1E+01	1.00	12+01
1771.4	0.155	Co-56	2.30		2.22		2.09		1.97		1.91		1.84		1.80	
1791.2	0.078	I-135	2.40		2.31		2.18		2.08		2.01		1.96		1.91	
1810.7	0.272	Mn-56	7.96		7.69		7.30		6.91		6.72		6.50		6.34	
1897.6	0.147	Br-84	4.44		4.28		4.02		3.78		3.64		3.51		3.40	
1901.3	0.072	La-142	1.62		1.55		1.46		1.37		1.33		1.28		1.24	
2091.0	0.056	Sb-124	1.51		1.4/		1.40		1.35		1.32		1.30		1.2/	
2113.0	0.143	Cs-138	4.30 3.37		4.21 3.25		4.04		3.80 2.98		১./୪ 2.91		3.07 2.85		3.39 279	
2397.8	0.133	La-142	3.16		3.05		2.90		2.77		2.70		2.62		2.54	
2484.1	0.067	Br-84	2.16		2.09		1.99		1.90		1.85		1.80		1.75	
2542.7	0.100	La-142	2.41		2.33		2.23		2.13		2.09		2.02		1.97	
2598.6	0.167	Co-56	2.72		2.65		2.53		2.44		2.40		2.34		2.30	
2639.6	0.076	Cs-138	1.76	45.61	1.71	45.61	1.66	45.51	1.60	45.61	1.57	45.51	1.55	45.41	1.52	45.61
2/54.0	0.999	Na-24	1.46	IE+01	1.41	IE+01	1.34	1E+01	1.28	IE+01	1.24	1E+01	1.22	1E+01	1.18	1E+01
3203.0	0.074	Br-84	1.20 2.41		1.24 2.37		1.20 2.32		1.17 2.26		2.23		2 20		1.13 2.18	
	2.000	<u> </u>	E. T.		2.57		2.52		2.20		2.20		2.20		2.10	

付表-2-2 線量率と地上高1mでのγ線フルエンス率との関係 単位 : (cm⁻²・s⁻¹) / (μSv/h)

エネルギー	放出比			Ţ	放射性物	物質の土	実中に	おける釒	沿直分布	iを表す	パラメー	- <i>γ</i> β	(g •	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	0.	0	0.	1	0.	2	0.	3	0.	5	1.	0	2.	0
11.2	0.255	Pb-210	2.23	1E+02	1.50	1E+02	1.09	1E+02	8.86	1E+01	6.79	1E+01	4.82	1E+01	3.65	1E+01
12.7	0.081	Th-232	2.44	1E+02	2.43	1E+02	2.11	1E+02	1.91	1E+02	1.66	1E+02	1.34	1E+02	1.06	1E+02
12.7	0.089	Th-228	1.31	1E+02	9.07	1E+01	6.64	1E+01	5.35	1E+01	4.00	1E+01	2.59	1E+01	1.71	1E+01
13.4	0.079	U-236	1.83	1E+02	1.97	1E+02	1.82	1E+02	1./4	1E+02	1.64	1E+02	1.51	1E+02	1.41	1E+02
13.4	0.084	U-238	2.39	1E+02	2.58	1E+02	2.40	1E+02	2.28	1E+02	2.15	1E+02	1.97	1E+02	1.83	1E+02
13.4	0.094	U=234	1.95	1E+02	2.05	1E+02	1.07	1E+02	1.70	1E+02	1.04	1E+02	1.40	1E+02	1.30	1E+02
13.4	0.094	Th-234	5.91	1E+01	3.51	1E+01	2 47	1E+02	1.95	1E+01	1.44	1F+01	9.27	12.02	6.17	12.02
13.7	0.562	Np-237	9.07	1E+01	6.12	1E+01	4.54	1E+01	3.71	1E+01	2.83	1E+01	1.90	1E+01	1.31	1E+01
13.7	0.776	Th-231	1.39	1E+02	1.08	1E+02	8.55	1E+01	7.24	1E+01	5.82	1E+01	4.18	1E+01	3.05	1E+01
14.1	0.040	Pu-239	1.82	1E+02	1.90	1E+02	1.71	1E+02	1.61	1E+02	1.49	1E+02	1.31	1E+02	1.15	1E+02
14.1	0.082	Pu-242	2.10	1E+02	2.19	1E+02	2.01	1E+02	1.90	1E+02	1.77	1E+02	1.59	1E+02	1.42	1E+02
14.1	0.089	Pu-240	1.91	1E+02	2.03	1E+02	1.90	1E+02	1.82	1E+02	1.74	1E+02	1.64	1E+02	1.58	1E+02
14.1	0.102	Pu-238	2.07	1E+02	2.21	1E+02	2.07	1E+02	1.98	1E+02	1.89	1E+02	1.79	1E+02	1.73	1E+02
14.1	0.103	Pu-236	1.91	1E+02	2.04	1E+02	1.89	1E+02	1.81	1E+02	1.72	1E+02	1.61	1E+02	1.53	1E+02
14.4	0.365	Am-241	6.42	1E+01	4.52	1E+01	3.40	1E+01	2.81	1E+01	2.20	1E+01	1.55	IE+01	1.13	1E+01
14.4	0.373	Cm-244	2 03	1E+01	2.13	1E+01	1.30	1E+01	1.02	1E+01	1 78	1F+02	4.03	1E+02	2.90	1E+02
14.8	0.085	Cm-242	1.85	1E+02	1.93	1E+02	1.79	1E+02	1.07	1E+02	1.63	1F+02	1.54	1F+02	1.00	1E+02
14.8	0.098	Am-242	3.67	1E+01	2.50	1E+01	1.87	1E+01	1.51	1E+01	1.15	1E+01	7.58		5.05	
14.8	0.461	Cm-243	3.32	1E+01	1.80	1E+01	1.24	1E+01	9.61		6.88		4.24		2.68	
14.8	0.471	Cm-245	4.00	1E+01	2.24	1E+01	1.56	1E+01	1.21	1E+01	8.77		5.47		3.51	
15.2	0.273	Am-242m	2.28	1E+02	2.33	1E+02	2.13	1E+02	2.00	1E+02	1.87	1E+02	1.71	1E+02	1.58	1E+02
15.5	0.161	Am-242	6.56	1E+01	4.62	1E+01	3.52	1E+01	2.88	1E+01	2.21	1E+01	1.48	1E+01	9.92	
16.5	0.183	Mo-93	7.05	1E+01	8.43	1E+01	8.33	1E+01	8.29	1E+01	8.32	1E+01	8.23	1E+01	8.36	1E+01
16.6	0.060	Nb-93m	1.26	1E+02	1.51	1E+02	1.50	1E+02	1.49	1E+02	1.50	1E+02	1.49	1E+02	1.50	1E+02
10.0	0.350	Mo-93 Mo-93	1.30	1E+02 1E+01	1.03	1E+02	1.01	1E+02	1.01	1E+02	1.01	1E+02	1.6U 5.64	1E+02	1.03	1E+02 1E+01
20.1	0.090	Rh-103m	6.09	1E+01	5.23	1E+01	5.30 6.48	1E+01	5.40 6.35	1E+01	6.24	1E+01	5.04 6.06	1E+01	6.01	1E+01
20.1	0.349	Rh-103m	1.16	1E+03	1.28	1E+02	1.24	1E+02	1.22	1E+02	1.21	1E+02	1.18	1E+02	1.17	1E+02
22.7	0.094	Rh-103m	3.45	1E+02	4.05	1E+02	4.12	1E+02	4.19	1E+02	4.29	1E+02	4.41	1E+02	4.57	1E+02
25.3	0.410	Sn-117m	4.34	1E+01	3.23	1E+01	2.66	1E+01	2.32	1E+01	1.90	1E+01	1.39	1E+01	9.85	
25.6	0.146	Th-231	6.10	1E+01	6.69	1E+01	6.36	1E+01	6.06	1E+01	5.56	1E+01	4.69	1E+01	3.79	1E+01
26.4	0.156	Sn-126	4.19	1E+01	3.34	1E+01	2.84	1E+01	2.53	1E+01	2.16	1E+01	1.66	1E+01	1.27	1E+01
27.2	0.103	Te-127m	7.66	1E+01	7.72	1E+01	7.46	1E+01	7.33	1E+01	7.16	1E+01	7.02	1E+01	6.91	1E+01
27.2	0.127	Te-129m	5.90	1E+01	4.80	1E+01	4.16	1E+01	3.75	1E+01	3.19	1E+01	2.47	1E+01	1.83	1E+01
27.2	0.327	Te=125m	1.04	1E+01	1.67	1E+01	1.42	1E+01	1.28	1E+01	1.15	1E+01	1.03	1E+01	0.95	1E+01
27.5	0.133	Te-129m	1.44	1E+02	9.08	1E+01	7.87	1E+02	7.12	1E+01	6.05	1E+02	4 69	1E+01	3.47	1E+02
27.5	0.611	Te-125m	1.44	1E+02	1.45	1E+02	1.41	1E+02	1.38	1E+02	1.35	1E+02	1.34	1E+02	1.32	1E+01
27.8	0.156	Te-129	5.32	1E+01	4.01	1E+01	3.32	1E+01	2.93	1E+01	2.42	1E+01	1.80	1E+01	1.28	1E+01
29.4	0.152	Np-237	6.45	1E+01	6.47	1E+01	6.01	1E+01	5.60	1E+01	4.99	1E+01	4.04	1E+01	3.17	1E+01
29.5	0.185	I-129	7.21	1E+01	7.17	1E+01	6.88	1E+01	6.75	1E+01	6.55	1E+01	6.30	1E+01	6.12	1E+01
29.8	0.343	I-129	1.35	1E+02	1.35	1E+02	1.30	1E+02	1.27	1E+02	1.23	1E+02	1.20	1E+02	1.16	1E+02
30.6	0.092	Cs-134m	5.35	1E+01	4.68	1E+01	4.19	1E+01	3.88	1E+01	3.44	1E+01	2.82	1E+01	2.23	1E+01
31.0	0.067	Te-12/m	5.42	1E+01	5./6	1E+01	5./2	1E+01	5.72	1E+01	5./3	1E+01	5.//	1E+01	5.83	1E+01
31.0	0.000	$C_{c}=129m$	0.40	1E+01	2.97	1E+01	2.04	1E+01	2.4Z	1E+01	2.11	1E+01	5.30	1E+01	1.27	1E+01
31.0	0.170	Te-125m	5.52	1E+01	5.72	1E+01	5.67	1E+01	5.68	1E+01	5 70	1E+01	5.30	1E+01	5.85	1E+01
31.8	0.021	Ba-137m	9.28	1E-01	6.99	1E-01	5.86	1E-01	5.19	1E-01	4.31	1E-01	3.23	1E-01	2.31	1E-01
32.2	0.038	Ba-137m	1.71		1.29		1.09		9.62	1E-01	8.05	1E-01	6.05	1E-01	4.36	1E-01
33.6	0.122	I-129	4.96	1E+01	5.14	1E+01	5.08	1E+01	5.05	1E+01	5.05	1E+01	5.07	1E+01	5.14	1E+01
35.0	0.050	Cs-134m	3.00	1E+01	2.74	1E+01	2.52	1E+01	2.38	1E+01	2.17	1E+01	1.86	1E+01	1.55	1E+01
35.5	0.067	Te-125m	1.76	1E+01	1.94	1E+01	1.98	1E+01	2.02	1E+01	2.08	1E+01	2.20	1E+01	2.34	1E+01
38.7	0.223	Nd-147	3.71	1E+01	3.09	1E+01	2.74	1E+01	2.51	1E+01	2.22	1E+01	1.81	1E+01	1.44	1E+01
39.6	0.0/5	I-129 Ev. 155	3.19	1E+01	3.48	1E+01	3.54	1E+01	3.60	1E+01	3.71	1E+01	3.90	1E+01	4.16	1E+01
43.U 50 5	0.118	i≟u−100	4.ZJ	1⊑+01 1⊑+01	3.0Z	1⊑+01	ა.აI 5 10	1⊑+01	3.UX 5.00	1⊑+01	2./ŏ 1.60	1⊑+01	2.3/ / 15	1⊑+01 1⊑±01	1.98	1⊑+01
59.5 59.5	0.340	0-237 Am-941	0.0Z 1 AQ	1E+01	0.44 2.12	1E+01	0.19 2.21	1E+02	2.00	1E+01	4.09 2.30	1E+02	4.10 2.27	1E+02	ა.ებ ე ეე	1E+02
64.3	0.096	Sn-126	3.30	1E+01	3.39	1E+01	3.33	1E+01	3.29	1E+01	3.20	1E+01	2.99	1E+01	2.75	1E+01
74.7	0.674	Am-243	2.51	1E+02	2.53	1E+02	2.47	1E+02	2.41	1E+02	2.31	1E+02	2.17	1E+02	2.00	1E+02
74.8	0.104	Pb-212	1.94	1E+01	1.78	1E+01	1.69	1E+01	1.61	1E+01	1.51	1E+01	1.33	1E+01	1.14	1E+01
77.1	0.176	Pb-212	3.26	1E+01	3.01	1E+01	2.84	1E+01	2.73	1E+01	2.54	1E+01	2.25	1E+01	1.94	1E+01
84.2	0.067	Th-231	3.71	1E+01	5.46	1E+01	6.14	1E+01	6.56	1E+01	7.02	1E+01	7.41	1E+01	7.50	1E+01
86.5	0.123	Np-237	6.10	1E+01	7.86	1E+01	8.30	1E+01	8.50	1E+01	8.66	1E+01	8.60	1E+01	8.29	1E+01

Lack (a ⁺)b ⁺ 0.0 0.1 0.2 0.3 0.5 1.0 2.0 BBS 0.06 Ku ⁻⁺ 163 1.18 IE-01 2.18 IE-01	エネルギー	放出比				放射性特	物質の土	壊中に	おける釒	沿直分布	iを表す	パラメー	-タ β	(g•	cm ⁻²)		
B65 0.000 Eur-155 1.16 E-62 1.10 E-62 1.07 E-62 0.07 E-64 0.08 E-64 0.07 E-64 0.07 <	(keV)	$(s^{-1}Bq^{-1})$	核種	0.0	0	0.	1	0.	2	0.	3	0.	5	1.	0	2.	0
B65 0.008 Sn 126 1.0 1.20 1.6-01 3.20 1.6-01 3.20 1.6-01 3.20 1.6-01 3.20 1.6-01 3.20 1.6-01 3.20 1.6-02 3.5 1.6-01 4.00 1.6-01 4.00 1.6-01 4.00 1.6-01 4.00 1.6-01 4.00 1.6-01 1.20 1.6-01 <th1.20< th=""> <th1.20< th=""> <th1.20< th="" th<=""><th>86.5</th><th>0.309</th><th>Eu-155</th><th>1.18</th><th>1E+02</th><th>1.13</th><th>1E+02</th><th>1.10</th><th>1E+02</th><th>1.07</th><th>1E+02</th><th>1.03</th><th>1E+02</th><th>9.60</th><th>1E+01</th><th>8.84</th><th>1E+01</th></th1.20<></th1.20<></th1.20<>	86.5	0.309	Eu-155	1.18	1E+02	1.13	1E+02	1.10	1E+02	1.07	1E+02	1.03	1E+02	9.60	1E+01	8.84	1E+01
876 0.370 Sn-128 1.28 1.692 1.38 1.692 1.38 1.692 1.38 1.692 1.38 1.692 1.38 1.692 1.38 1.692 1.691 2.48 1.691 3.48 1.691 3.48 1.691 3.48 1.691 3.48 1.691 3.48 1.691 3.48 1.691 3.48 1.691 3.48 1.691 3.48 1.691 3.48 1.691 3.48 1.691 3.48 1.691 3.48 1.691 3.48 1.691 <	86.9	0.089	Sn-126	3.10	1E+01	3.26	1E+01	3.28	1E+01	3.26	1E+01	3.23	1E+01	3.11	1E+01	2.96	1E+01
911 0.273 M-147 5.00 1E-01 4.75 1E-01 4.82 1E-01 2.82 1E-00 2.84 1E-00 2.81 1E-01 2.81 1E-01 2.81 1E-01 2.81 1E-01 1.84 1E-01 1.84 <th< td=""><td>87.6</td><td>0.370</td><td>Sn-126</td><td>1.28</td><td>1E+02</td><td>1.36</td><td>1E+02</td><td>1.36</td><td>1E+02</td><td>1.36</td><td>1E+02</td><td>1.35</td><td>1E+02</td><td>1.29</td><td>1E+02</td><td>1.23</td><td>1E+02</td></th<>	87.6	0.370	Sn-126	1.28	1E+02	1.36	1E+02	1.36	1E+02	1.36	1E+02	1.35	1E+02	1.29	1E+02	1.23	1E+02
91. 0.168 U-327 2.69 1E-01 2.74 1E-01 2.85 1E-01 3.85 1E-01 3.85 <th< td=""><td>91.1</td><td>0.279</td><td>Nd-147</td><td>5.06</td><td>1E+01</td><td>4.90</td><td>1E+01</td><td>4.75</td><td>1E+01</td><td>4.62</td><td>1E+01</td><td>4.44</td><td>1E+01</td><td>4.08</td><td>1E+01</td><td>3.65</td><td>1E+01</td></th<>	91.1	0.279	Nd-147	5.06	1E+01	4.90	1E+01	4.75	1E+01	4.62	1E+01	4.44	1E+01	4.08	1E+01	3.65	1E+01
886 0.157 Pe-233 187 1670 127 1670 172 1670 172 1670 172 1670 173 1670 173 1670 173 1670 173 1670 173 1670 173 1670 173 1670 173 1670 173 1670 173 1670 173 1670 173 171 172 172 172 171 171 171 171 171 171 171 171 <td>97.1</td> <td>0.166</td> <td>U-237</td> <td>2.69</td> <td>1E+01</td> <td>2.78</td> <td>1E+01</td> <td>2.74</td> <td>1E+01</td> <td>2.68</td> <td>1E+01</td> <td>2.59</td> <td>1E+01</td> <td>2.42</td> <td>1E+01</td> <td>2.19</td> <td>1E+01</td>	97.1	0.166	U-237	2.69	1E+01	2.78	1E+01	2.74	1E+01	2.68	1E+01	2.59	1E+01	2.42	1E+01	2.19	1E+01
996 0.147 Om-243 2.71 IE-01 2.84 IE-01 2.85 IE-01 2.85 IE-01 2.85 IE-01 3.87 IE-01 3.87 <t< td=""><td>98.4</td><td>0.157</td><td>Pa-233</td><td>1.87</td><td>1E+01</td><td>1.82</td><td>1E+01</td><td>1.76</td><td>1E+01</td><td>1.72</td><td>1E+01</td><td>1.61</td><td>1E+01</td><td>1.48</td><td>1E+01</td><td>1.29</td><td>1E+01</td></t<>	98.4	0.157	Pa-233	1.87	1E+01	1.82	1E+01	1.76	1E+01	1.72	1E+01	1.61	1E+01	1.48	1E+01	1.29	1E+01
996 0.15 Np-239 2.13 1E-01 2.03 1E-01 2.03 1E-01 3.43 1E-01 3.43 1E-01 3.53 1E-01 3.53 1E-01 3.53 1E-01 3.53 1E-01 3.55 1E-01 1.55 1E-01 1.55 1E-01 1.55 1E-01 1.55 1E-01 1.55 <th< td=""><td>99.6</td><td>0.147</td><td>Cm-243</td><td>2.71</td><td>1E+01</td><td>2.74</td><td>1E+01</td><td>2.69</td><td>1E+01</td><td>2.62</td><td>1E+01</td><td>2.51</td><td>1E+01</td><td>2.30</td><td>1E+01</td><td>2.05</td><td>1E+01</td></th<>	99.6	0.147	Cm-243	2.71	1E+01	2.74	1E+01	2.69	1E+01	2.62	1E+01	2.51	1E+01	2.30	1E+01	2.05	1E+01
99.6 0.18 0.1-24 4.00 1E-01 4.19 1E-01 4.06 1E-01 4.06 1E-01 3.32 1E-01 3.22 1E-01 3.22 1E-01 3.22 1E-01 3.22 1E-01 3.25 1E-01 3.35 1E-01 3.35 <t< td=""><td>99.6</td><td>0.157</td><td>Np-239</td><td>2.13</td><td>1E+01</td><td>2.14</td><td>1E+01</td><td>2.09</td><td>1E+01</td><td>2.03</td><td>1E+01</td><td>1.94</td><td>1E+01</td><td>1.78</td><td>1E+01</td><td>1.58</td><td>1E+01</td></t<>	99.6	0.157	Np-239	2.13	1E+01	2.14	1E+01	2.09	1E+01	2.03	1E+01	1.94	1E+01	1.78	1E+01	1.58	1E+01
101.1 0.268 U-5.27 4.33 1E-01 4.44 1E-01 4.36 1E-01 7.36 1E-00 7.38 1E-01 7.37 1E-01 7.37 1E-01 7.37 1E-01 7.37 1E-01 7.38	99.6	0.185	Cm-245	4.00	1E+01	4.19	1E+01	4.15	1E+01	4.06	1E+01	3.93	1E+01	3.62	1E+01	3.27	1E+01
1018.8 0.019 Am242 5.57 16-70 7.37 16-70 7.37 16-70 7.37 16-70 7.37 16-70 7.33 16-70 7.33 16-70 7.33 16-70 7.33 16-70 7.33 16-70 7.33 16-70 7.33 16-70 7.33 16-70 7.33 16-70 7.33 16-70 7.33 16-70 7.33 16-70 7.35 16-70 7.35 16-70 7.35 16-70 7.36 16-70 7.35 16-70 7.35 16-70 7.35 16-70 7.35 16-70 7.35 16-70 7.35 16-70 7.35 16-70 7.35 16-70 7.35 16-70 7.35 16-70 7.35 16-70 7.35 16-70 7.35 16-70 7.35 16-70 1.35 16-70 1.35 16-70 1.35 16-70 1.35 16-70 1.35 16-70 1.35 16-70 1.35 16-70 1.35 16-70 1.35	101.1	0.266	U-237	4.33	1E+01	4.49	1E+01	4.44	1E+01	4.36	1E+01	4.22	1E+01	3.92	1E+01	3.58	1E+01
103.8 0.243 0.7243 4.34 1E-701 4.33 1E-701 4.33 1E-701 4.33 1E-701 4.33 1E-701 4.33 1E-701 4.33 1E-701 6.33 1E-701 7.35 1E-70 1.33 1E-70 1.35 1E-70 1.	103.8	0.059	Am-242	5.67	1E+01	1.23	1E+01	/./1	1E+01	/.86	1E+01	/.9/	1E+01	7.80	1E+01	7.34	1E+01
103.8 0.2.1 0.2.3 0.2.3 1.1.01 3.4 1.1.01 3.3.3 1.1.01 3.3.4 1.1.01 3.3.4 1.1.01 3.3.4 1.1.01 3.3.4 1.1.01 3.3.5 1.1.01 3.5.5 1.1.01 3.5.5 1.1.01 1.5.5 1.1.01 1.5.5 1.1.01 1.5.5 1.1.01 1.5.5 1.1.01 1.5.5 1.1.01 1.5.5 1.1.01 1.1.	103.8	0.230	Cm-243	4.30	1E+01	4.42	1E+01	4.33	1E+01	4.23	1E+01	4.00	1E+01	3./1	1E+01	3.30	1E+01
102.5 0.2.06 Eu-1.5.0 0.7.1 1E-01 0.8.3 1E-01 0.7.3 1E-01 0.8.3 1E-01 1.0.3	103.0	0.201	np=239	6.43	1E+01	5.44 6.75	1E+01	5.55	1E+01	6.54	1E+01	633	1E+01	5.85	1E+01	2.30	1E+01
105.1 0.2.5 by 2.39 12.3 12.01 <t< td=""><td>105.0</td><td>0.235</td><td>5 Eu=155</td><td>7.01</td><td>1E+01</td><td>0.75</td><td>1E+01</td><td>7.56</td><td>1E+01</td><td>7.40</td><td>1E+01</td><td>7 1 9</td><td>1E+01</td><td>6 70</td><td>1E+01</td><td>6.36</td><td>1E+01</td></t<>	105.0	0.235	5 Eu=155	7.01	1E+01	0.75	1E+01	7.56	1E+01	7.40	1E+01	7 1 9	1E+01	6 70	1E+01	6.36	1E+01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	105.5	0.200	Nn-239	3 70	1E+01	3.75	1E+01	3.64	1E+01	3 55	1E+01	3.40	1E+01	3.11	1E+01	2 78	1E+01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	117.3	0.066	Cm-245	1 44	1F+01	1 52	1E+01	1 50	1E+01	1 48	1E+01	1 43	1E+01	1.33	1E+01	1.21	1E+01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	121.1	0.173	Se-75	1.26	1E+01	1.18	1E+01	1.13	1E+01	1.09	1E+01	1.03	1E+01	9.43		8.26	
	122.1	0.855	Co-57	1.88	1E+02	1.79	1E+02	1.72	1E+02	1.66	1E+02	1.58	1E+02	1.44	1E+02	1.29	1E+02
133.0 0.419 H-181 2.30 1E-01 2.31 1E-01 1.31 <	127.5	0.141	Cs-134m	9.61	1E+01	1.07	1E+02	1.11	1E+02	1.14	1E+02	1.16	1E+02	1.16	1E+02	1.15	1E+02
136.0 0.011 Oc-144 1.33 1E+02 1.24 1E+02 1.21 1E+02 1.21 1E+02 1.21 1E+02 1.21 1E+02 1.21 1E+02 1.21 1E+01 1.35 1E+01 3.59 1E+01 3.59 1E+01 3.59 1E+01 3.59 1E+01 3.59 1E+02 1.41 1E+02 1.43 1E+01 1.56 1E+02 1.41 1E+02 1.57 1E+01 1.56 1E+02 1.43 1E+02 1.57 1E+01 1.33 1E+02 1.35 1E+02 1.35 1E+02 1.28 1E+02 1.35 1E+02 1.29 1E+02 1.35 1E+02 1.29 1E+01 1.31	133.0	0.419	Hf-181	2.30	1E+01	2.18	1E+01	2.09	1E+01	2.03	1E+01	1.93	1E+01	1.76	1E+01	1.57	1E+01
136.6 0.590 Se-75 4.35 1e-01 2.36 1e-01 1.36 1e-01 1.36 1e-01 1.36 1e-01 1.36 1e-01 1.36 1e-01 1.36 1e-02 1.33 1e-02 1.33 1e-02 1.33 1e-02 1.33 1e-02 1.31 1e-02 1.31 1e-02 1.31 1e-02 1.31 1e-02 1.33 1e-01 1.33 1e-01 1.33 1e-02 1.31 1e-01 1.31 <	133.5	0.111	Ce-144	1.33	1E+02	1.34	1E+02	1.32	1E+02	1.30	1E+02	1.27	1E+02	1.21	1E+02	1.12	1E+02
1365 0.106 Co-957 2.36 1E-01 2.25 1E-01 2.17 1E-01 2.11 1E-01 1.81 1E-01 1.81 1E-01 1.81 1E-01 1.81 1E-01 1.81 1E-01 1.81 1E-02 1.81 1E-01 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81	136.0	0.590	Se-75	4.35	1E+01	4.08	1E+01	3.92	1E+01	3.79	1E+01	3.59	1E+01	3.28	1E+01	2.91	1E+01
140.5 0.890 Tor-98m 1.88 1E+02 1.75 1E+02 1.69 1E+01 1.65 1E+01 1.45 1E+02 1.47 1E+02 1.28 1E+01 1.58 1E+01 1.58 1E+01 1.58 1E+01 1.58 1E+01 1.58 1E+02 1.34 1E+02 1.35 1E+02 1.34 1E+02 1.31 1E+02 1.31 1E+02 1.31 1E+02 1.31 1E+02 1.31 1E+02 1.31 1E+01 1.43 1E+02 1.31 1E+01 1.41 1E+02 1.31 1E+01 1.41 1E+	136.5	0.106	Co-57	2.36	1E+01	2.25	1E+01	2.17	1E+01	2.11	1E+01	2.01	1E+01	1.84	1E+01	1.65	1E+01
143.8 0.110 U-235 1.77 IE+01 1.87 IE+02 1.58 IE+02 1.56 IE+02 1.36 IE+02 1.36 IE+02 1.36 IE+02 1.36 IE+02 1.38 IE+02 1.30 IE+02 1.38 IE+02 1.31 IE+01 2.31 IE+02 1.31 IE+01 2.31 IE+02 1.30 IE+01 2.31 IE+01 3.31 IE+01 3.31 IE+01 2.31 IE+01 2.31 IE+01 2.31 IE+01 3.31 IE+01	140.5	0.890	Tc-99m	1.88	1E+02	1.81	1E+02	1.75	1E+02	1.69	1E+02	1.61	1E+02	1.47	1E+02	1.32	1E+02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	143.8	0.110	U-235	1.77	1E+01	1.73	1E+01	1.67	1E+01	1.63	1E+01	1.56	1E+01	1.42	1E+01	1.28	1E+01
135.0 0.844 5n-117m 1.27 1.26 1.20 1.20 1.20 1.21 1.21 1.21 1.24 1.26 1.25 1.25 1.26	145.4	0.484	Ce-141	1.61	1E+02	1.57	1E+02	1.53	1E+02	1.50	1E+02	1.45	1E+02	1.34	1E+02	1.22	1E+02
192.6 0.0840 1e ⁻¹ (2 xm) 1.36 1e ⁺¹ (2 xm) 1.38 1e ⁺¹ (1 xm) 1.26 1e ⁺¹ (1 xm) 1.28 1e ⁺¹ (1 xm) 1.18 1e ⁺	158.6	0.864	Sn-II/m	1.27	1E+02	1.32	1E+02	1.31	1E+02	1.30	1E+02	1.28	1E+02	1.21	1E+02	1.11	1E+02
	159.0	0.840	Te-123m	1.30	1E+02	1.38	1E+02	1.37	1E+02	1.35	1E+02	1.32	1E+02	1.24	1E+02	1.14	1E+02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	165.0	0.002	Ba=140 Ba=130	1.00	1E+02	9.71	1E+02	9.30	15+02	9.19	1E+02	0.03	1E+02	0.12	1E+02	1.05	1E+02
181.10.061Mo-991.311E+011.261E+011.211E+011.181E+011.141E+019.381E+019.36185.70.572U-2359.451E+019.291E+018.001E+018.741E+018.741E+017.791E+019.201E+01202.50.958Y-90m4.591E+014.401E+014.181E+013.891E+013.611E+013.251E+01205.30.050U-2358.398.247.977.807.466.946.30208.00.216U-2373.731E+013.961E+013.891E+013.821E+013.651E+01210.50.223Te-1348.057.777.487.307.026.525.88228.20.106Cm-2432.091E+019.661E+019.511E+019.521E+011.491E+011.37228.20.186Cm-2432.091E+019.661E+019.551E+019.751E+018.871E+018.451E+01228.20.882Te-1329.591E+019.661E+019.571E+019.751E+018.711E+01238.60.434Pb-2128.751E+019.661E+019.751E+019.751E+018.871E+01241.00.068Y=932.661E+018.441E+01	174.9	0.200	Cm-245	2 16	1E+01	2.31	1E+02	2.28	1E+01	2.28	1E+02	2.21	1E+01	2 09	1E+01	1.00	1E+02
185.70.572U-2359.451E+019.291E+019.001E+018.791E+018.411E+017.791E+017.051E+01186.00.033Ra-2261.251E+021.201E+021.161E+021.011E+021.031E+029.331E+013.611E+013.221E+01202.50.958Y-90m4.591E+014.401E+014.101E+013.891E+013.611E+013.221E+01205.30.050U-2373.731E+013.961E+013.911E+013.891E+013.851E+013.751E+013.751E+013.751E+013.751E+013.751E+013.751E+013.751E+013.751E+013.751E+013.751E+013.751E+01<	181.1	0.061	Mo-99	1.31	1E+01	1.26	1E+01	1.21	1E+01	1.18	1E+01	1.13	1E+01	1.04	1E+01	9.36	12.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	185.7	0.572	U-235	9.45	1E+01	9.29	1E+01	9.00	1E+01	8.79	1E+01	8.41	1E+01	7.79	1E+01	7.05	1E+01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	186.0	0.033	Ra-226	1.25	1E+02	1.20	1E+02	1.16	1E+02	1.13	1E+02	1.08	1E+02	9.93	1E+01	9.02	1E+01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	202.5	0.958	Y-90m	4.59	1E+01	4.40	1E+01	4.18	1E+01	4.10	1E+01	3.89	1E+01	3.61	1E+01	3.25	1E+01
208.00.216U-2373.731E+013.861E+013.911E+013.821E+013.821E+013.651E+013.421E+01210.50.223Te-1348.057.777.887.307.026.525.88228.20.106Cm-2432.091E+012.161E+012.111E+011.051E+011.051E+011.081E+011.081E+011.081E+011.081E+011.081E+011.081E+019.291E+018.271E+01228.20.882Te-1329.591E+019.661E+019.551E+019.521E+019.291E+018.471E+01234.70.261Nb-95m8.981E+019.981E+019.971E+019.971E+019.751E+019.201E+018.451E+01234.60.434Pb-2128.751E+018.421E+018.111E+017.941E+017.641E+017.121E+018.151E+01264.90.068Y=932.661E+012.451E+012.401E+012.301E+013.71E+012.421E+01277.60.144Cm-2432.821E+012.941E+012.901E+012.811E+011.971E+011.821E+01277.60.144Np-2392.131E+012.441E+012.801E+01 <t< td=""><td>205.3</td><td>0.050</td><td>U-235</td><td>8.39</td><td></td><td>8.24</td><td></td><td>7.97</td><td></td><td>7.80</td><td></td><td>7.46</td><td></td><td>6.94</td><td></td><td>6.30</td><td></td></t<>	205.3	0.050	U-235	8.39		8.24		7.97		7.80		7.46		6.94		6.30	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	208.0	0.216	U-237	3.73	1E+01	3.96	1E+01	3.91	1E+01	3.89	1E+01	3.82	1E+01	3.65	1E+01	3.42	1E+01
228.20.106Cm-2432.091E+012.161E+012.121E+012.161E+012.111E+012.051E+011.291E+011.771E+01228.20.113Np-2391.641E+011.701E+011.661E+011.581E+011.581E+011.491E+011.371E+01228.20.882Te-1329.591E+019.591E+019.551E+019.521E+019.751E+018.711E+018.671E+018.671E+018.671E+018.671E+018.671E+012.201E+018.671E+012.211E+018.671E+012.251E+018.711E+012.251E+012.211E+012.211E+011.211E+011.221E+012.211E+012.211E+012.211E+012.211E+012.211E+012.211E+012.211E+012.211E+012.211E+012.211E+012.211E+012.231E+012.211E+012.301E+012.141E+011.301E+012.301E+012.141E+011.301E+012.231E+012.231E+012.211E+012.301E+012.301E+012.411E+012.551E+01266.90.68Y-932.661E+012.571E+012.501E+012.631E+012.641E+01<	210.5	0.223	Te-134	8.05		7.77		7.48		7.30		7.02		6.52		5.88	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	228.2	0.106	Cm-243	2.09	1E+01	2.16	1E+01	2.12	1E+01	2.11	1E+01	2.05	1E+01	1.92	1E+01	1.77	1E+01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	228.2	0.113	Np-239	1.64	1E+01	1.70	1E+01	1.66	1E+01	1.63	1E+01	1.58	1E+01	1.49	1E+01	1.37	1E+01
234.7 0.261 Nb-sbm 8.98 1E+01 9.97 1E+01 9.97 1E+01 9.75 1E+01 9.20 1E+01 8.45 1E+01 238.6 0.434 Pb-212 8.75 1E+01 8.42 1E+01 8.11 1E+01 7.94 1E+01 7.64 1E+01 7.12 1E+01 8.50 1E+01 241.0 0.040 Ra-224 1.13 1E+02 1.08 1E+01 4.26 1E+01 4.51 1E+01 3.98 1E+01 3.91 1E+01 3.92 1E+01 8.53 1E+01 266.9 0.068 Y-93 2.66 1E+01 2.55 1E+01 2.46 1E+01 2.30 1E+01 2.14 1E+01 1.92 1E+01 277.6 0.140 Cm-243 2.82 1E+01 2.90 1E+01 2.14 1E+01 1.82 1E+01 277.6 0.144 Np-239 2.13 1E+01 1.83 1E+01 1.71 1E+01 1.60 1E+01 1.82 1E+01 278.0 0.209 T	228.2	0.882	Te-132	9.59	1E+01	9.66	1E+01	9.55	1E+01	9.52	1E+01	9.29	1E+01	8.87	1E+01	8.25	1E+01
238.60.434Pb=2128.751E+018.741E+017.941E+017.641E+017.121E+016.501E+01241.00.040Ra-2241.131E+021.081E+021.021E+012.021E+019.021E+018.151E+01266.70.591Se-754.641E+014.411E+014.261E+012.401E+012.301E+012.141E+011.921E+01275.20.068Pm-1516.326.115.905.825.615.234.80277.60.140Cm-2432.821E+012.941E+012.901E+012.881E+012.641E+012.421E+01277.60.144Np-2392.131E+012.241E+012.141E+011.971E+011.821E+01278.00.209Te-1347.757.537.247.126.856.405.81279.50.252Se-751.981E+011.831E+011.711E+013.011E+01285.90.001Pm-1492.572.482.372.322.242.081.88293.30.420Ce-1434.401E+014.271E+011.861E+011.711E+013.621E+01300.10.066Pa-2338.698.808.538.478.157.697.011E+01314.10.610	234.7	0.261	Nb-95m	8.98	1E+01	9.98	1E+01	9.97	1E+01	9.97	1E+01	9.75	1E+01	9.20	1E+01	8.45	1E+01
261.7 0.040 Ra ² 224 1.13 1E+01 4.26 1E+02 1.02 1E+01 3.02 1E+01 3.03 1E+01 3.05 1E	238.0	0.434	Pb-212	8.75	1E+01	8.42	1E+01	8.11	1E+01	1.94	1E+01	7.64	1E+01	7.12	1E+01	0.50	1E+01
266.90.068Y-932.661E+012.551E+012.461E+012.401E+012.301E+012.141E+011.921E+01275.20.068Pm-1516.326.115.941E+012.401E+012.301E+012.411E+011.921E+01277.60.140Cm-2432.821E+012.941E+012.901E+012.881E+012.641E+012.421E+01277.60.144Np-2392.131E+012.221E+012.171E+012.141E+011.971E+011.821E+01278.00.209Te-1347.757.537.247.126.856.405.81279.50.252Se-751.981E+011.891E+011.781E+011.711E+011.601E+011.441E+01285.90.001Pm-1492.572.482.372.322.242.081.881.88293.30.420Ce-1434.401E+014.371E+014.251E+014.121E+013.611.501E+01300.10.066Pa-2338.698.808.538.478.157.697.011.501E+01312.00.386Pa-2335.081E+015.011E+014.981E+014.941E+014.761E+014.491E+014.111E+01314.10.610 <t< td=""><td>241.0</td><td>0.040</td><td>Ra-224 So-75</td><td>1.13</td><td>1E+01</td><td>1.00</td><td>1E+02</td><td>1.04</td><td>1E+01</td><td>1.02</td><td>1E+02</td><td>9.75</td><td>1E+01</td><td>9.02</td><td>1E+01</td><td>0.10</td><td>1E+01</td></t<>	241.0	0.040	Ra-224 So-75	1.13	1E+01	1.00	1E+02	1.04	1E+01	1.02	1E+02	9.75	1E+01	9.02	1E+01	0.10	1E+01
215.30.063Pm-1516.032.031.012.031.01<	266.9	0.068	Y-93	2.66	1E+01	2 5 5	1E+01	2 46	1E+01	2 40	1E+01	2.30	1E+01	2 14	1E+01	1 92	1E+01
277.6 0.140 Cm=243 2.82 1E+01 2.90 1E+01 2.88 1E+01 2.81 1E+01 2.64 1E+01 2.42 1E+01 277.6 0.144 Np=239 2.13 1E+01 2.22 1E+01 2.17 1E+01 2.14 1E+01 2.10 1E+01 1.97 1E+01 1.82 1E+01 278.0 0.209 Te=134 7.75 7.53 7.24 7.12 6.85 6.40 5.81 279.5 0.252 Se=75 1.98 1E+01 1.89 1E+01 1.83 1E+01 1.71 1E+01 1.60 1E+01 1.44 1E+01 285.9 0.001 Pm=149 2.57 2.48 2.37 2.32 2.24 2.08 1.88 293.3 0.420 Ce=143 4.40 1E+01 4.27 1E+01 4.25 1E+01 4.12 1E+01 3.91 1E+01 3.62 1E+01 300.1 0.066 Pa=233 8.69 8.80 8.53 8.47 8.15 7.69 7.01	275.2	0.068	Pm-151	6.32		6 1 1	12:01	5 90	12.01	5.82	12:01	5.61	12:01	5 23	12.01	4 80	12:01
277.60.144Np-2392.131E+012.221E+012.171E+012.141E+011.071E+011.821E+01278.00.209Te-1347.757.537.247.126.856.405.81279.50.252Se-751.981E+011.891E+011.831E+011.711E+011.601E+011.441E+01285.90.001Pm-1492.572.482.372.322.242.081.88293.30.420Ce-1434.401E+014.371E+014.271E+014.121E+013.911E+013.621E+01300.10.066Pa-2338.698.808.538.478.157.697.011.501E+01312.00.386Pa-2335.081E+015.111E+014.981E+014.941E+014.491E+014.111E+01314.10.610Sb-1286.866.606.396.266.045.595.071E+01318.90.192Rh-1057.761E+017.451E+017.051E+018.421E+017.811E+017.071E+01320.10.098Cr-519.691E+019.311E+018.971E+018.791E+016.841E+017.071E+01340.10.225Pm-1512.151E+019.011E+011.991E+011.93<	277.6	0.140	Cm-243	2.82	1E+01	2.94	1E+01	2.90	1E+01	2.88	1E+01	2.81	1E+01	2.64	1E+01	2.42	1E+01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	277.6	0.144	Np-239	2.13	1E+01	2.22	1E+01	2.17	1E+01	2.14	1E+01	2.10	1E+01	1.97	1E+01	1.82	1E+01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	278.0	0.209	Te-134	7.75		7.53		7.24		7.12		6.85		6.40		5.81	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	279.5	0.252	Se-75	1.98	1E+01	1.89	1E+01	1.83	1E+01	1.78	1E+01	1.71	1E+01	1.60	1E+01	1.44	1E+01
293.3 0.420 Ce-143 4.40 1E+01 4.37 1E+01 4.27 1E+01 4.25 1E+01 4.12 1E+01 3.91 1E+01 3.62 1E+01 300.1 0.066 Pa-233 8.69 8.80 8.53 8.47 8.15 7.69 7.01 306.1 0.051 Rh-105 2.06 1E+01 1.98 1E+01 4.90 1E+01 1.79 1E+01 1.66 1E+01 1.50 1E+01 312.0 0.386 Pa-233 5.08 1E+01 5.11 1E+01 4.98 1E+01 4.76 1E+01 4.49 1E+01 4.11 1E+01 3.62 1E+01 314.1 0.610 Sb-128 6.86 6.60 6.39 6.26 6.04 5.59 5.07 318.9 0.192 Rh-105 7.76 1E+01 7.45 1E+01 7.15 1E+01 8.70 1E+01 8.42 1E+01 6.28 1E+01 5.67 1E+01 320.1 0.098 Cr-51 9.69 1E+01 9.31 1E+01<	285.9	0.001	Pm-149	2.57		2.48		2.37		2.32		2.24		2.08		1.88	
300.10.066Pa-2338.698.808.538.478.157.697.01306.10.051Rh-1052.061E+011.981E+011.901E+011.861E+011.791E+011.661E+011.501E+01312.00.386Pa-2335.081E+015.111E+014.981E+014.941E+014.761E+014.491E+014.111E+01314.10.610Sb-1286.866.606.396.266.045.595.07318.90.192Rh-1057.761E+017.451E+017.151E+016.761E+016.281E+015.671E+01320.10.098Cr-519.691E+019.311E+018.971E+018.791E+018.421E+017.811E+017.071E+01330.90.780Sb-1308.578.287.977.807.477.016.341E+01340.50.422Cs-1367.247.046.776.626.365.955.421E+01340.55.955.42342.10.067Ag-1117.901E+017.321E+017.201E+016.481E+015.871E+01344.30.266Eu-1528.207.977.757.587.336.886.286.28	293.3	0.420	Ce-143	4.40	1E+01	4.37	1E+01	4.27	1E+01	4.25	1E+01	4.12	1E+01	3.91	1E+01	3.62	1E+01
306.1 0.051 $Rh-105$ 2.06 $1E+01$ 1.98 $1E+01$ 1.90 $1E+01$ 1.86 $1E+01$ 1.79 $1E+01$ 1.66 $1E+01$ 1.50 $1E+01$ 312.0 0.386 $Pa-233$ 5.08 $1E+01$ 5.11 $1E+01$ 4.98 $1E+01$ 4.94 $1E+01$ 4.76 $1E+01$ 4.49 $1E+01$ 4.11 $1E+01$ 314.1 0.610 $Sb-128$ 6.86 6.60 6.39 6.26 6.04 5.59 5.07 318.9 0.192 $Rh-105$ 7.76 $1E+01$ 7.45 $1E+01$ 7.15 $1E+01$ 6.76 $1E+01$ 6.28 $1E+01$ 5.67 $1E+01$ 320.1 0.098 $Cr-51$ 9.69 $1E+01$ 9.31 $1E+01$ 8.97 $1E+01$ 8.79 $1E+01$ 8.42 $1E+01$ 7.81 $1E+01$ 7.07 $1E+01$ 330.9 0.780 $Sb-130$ 8.57 8.28 7.97 7.80 7.47 7.01 6.34 340.1 0.225 $Pm-151$ 2.15 $1E+01$ 2.09 $1E+01$ 1.99 $1E+01$ 1.93 $1E+01$ 1.80 $1E+01$ 1.67 $1E+01$ 340.5 0.422 $Cs-136$ 7.24 7.04 6.77 6.62 6.36 5.95 5.42 342.1 0.067 $Ag-111$ 7.90 $1E+01$ 7.67 $1E+01$ 7.20 $1E+01$ 6.48 $1E+01$ 5.87 $1E+01$ 344.3 <td< td=""><td>300.1</td><td>0.066</td><td>Pa-233</td><td>8.69</td><td></td><td>8.80</td><td></td><td>8.53</td><td></td><td>8.47</td><td></td><td>8.15</td><td></td><td>7.69</td><td></td><td>7.01</td><td></td></td<>	300.1	0.066	Pa-233	8.69		8.80		8.53		8.47		8.15		7.69		7.01	
312.0 0.386 $Pa-233$ 5.08 $1E+01$ 5.11 $1E+01$ 4.98 $1E+01$ 4.94 $1E+01$ 4.49 $1E+01$ 4.11 $1E+01$ 314.1 0.610 $Sb-128$ 6.86 6.60 6.39 6.26 6.04 5.59 5.07 318.9 0.192 $Rh-105$ 7.76 $1E+01$ 7.45 $1E+01$ 7.15 $1E+01$ 7.01 $1E+01$ 6.28 $1E+01$ 6.28 320.1 0.098 $Cr-51$ 9.69 $1E+01$ 9.31 $1E+01$ 8.97 $1E+01$ 8.79 $1E+01$ 8.42 $1E+01$ 7.81 $1E+01$ 7.07 $1E+01$ 330.9 0.780 $Sb-130$ 8.57 8.28 7.97 7.80 7.47 7.01 6.34 340.1 0.225 $Pm-151$ 2.15 $1E+01$ 2.09 $1E+01$ 1.99 $1E+01$ 1.93 $1E+01$ 1.80 $1E+01$ 1.67 $1E+01$ 340.5 0.422 $Cs-136$ 7.24 7.04 6.77 6.62 6.36 5.95 5.42 342.1 0.067 $Ag-111$ 7.90 $1E+01$ 7.32 $1E+01$ 7.20 $1E+01$ 6.48 $1E+01$ 5.87 $1E+01$ 344.3 0.266 $Eu-152$ 8.20 7.97 7.75 7.58 7.33 6.88 6.28	306.1	0.051	Rh-105	2.06	1E+01	1.98	1E+01	1.90	1E+01	1.86	1E+01	1.79	1E+01	1.66	1E+01	1.50	1E+01
314.1 0.610 Sb-128 6.86 6.60 6.39 6.26 6.04 5.59 5.07 318.9 0.192 Rh-105 7.76 1E+01 7.45 1E+01 7.15 1E+01 6.70 1E+01 6.28 1E+01 6.28 1E+01 6.28 1E+01 6.28 1E+01 5.67 1E+01 320.1 0.098 Cr-51 9.69 1E+01 9.31 1E+01 8.97 1E+01 8.79 1E+01 8.42 1E+01 7.81 1E+01 7.07 1E+01 330.9 0.780 Sb-130 8.57 8.28 7.97 7.80 7.47 7.01 6.34 340.1 0.225 Pm-151 2.15 1E+01 2.09 1E+01 1.99 1E+01 1.93 1E+01 1.80 1E+01 1.67 1E+01 340.5 0.422 Cs-136 7.24 7.04 6.77 6.62 6.36 5.95 5.42 342.1 0.067 Ag-111 7.90 1E+01 7.67 1E+01 7.20 1E+01 6.48	312.0	0.386	Pa-233	5.08	1E+01	5.11	1E+01	4.98	1E+01	4.94	1E+01	4.76	1E+01	4.49	1E+01	4.11	1E+01
318.9 0.192 Rh-10b /./6 1E+01 /.45 1E+01 7.15 1E+01 7.01 1E+01 6.76 1E+01 6.28 1E+01 5.67 1E+01 320.1 0.098 Cr-51 9.69 1E+01 9.31 1E+01 8.97 1E+01 8.79 1E+01 8.42 1E+01 7.81 1E+01 7.07 1E+01 330.9 0.780 Sb-130 8.57 8.28 7.97 7.80 7.47 7.01 6.34 340.1 0.225 Pm-151 2.15 1E+01 2.09 1E+01 2.02 1E+01 1.99 1E+01 1.93 1E+01 1.80 1E+01 1.67 1E+01 340.5 0.422 Cs-136 7.24 7.04 6.77 6.62 6.36 5.95 5.42 342.1 0.067 Ag-111 7.90 1E+01 7.67 1E+01 7.20 1E+01 6.48 1E+01 5.87 1E+01 344.3 0.266 Eu-152 8.20 7.97 7.75 7.58 7.33 6.88 <td>314.1</td> <td>0.610</td> <td>Sb-128</td> <td>6.86</td> <td>4.5.4</td> <td>6.60</td> <td>45.61</td> <td>6.39</td> <td>45.61</td> <td>6.26</td> <td>45.61</td> <td>6.04</td> <td>45.61</td> <td>5.59</td> <td>45.54</td> <td>5.07</td> <td>45.41</td>	314.1	0.610	Sb-128	6.86	4.5.4	6.60	45.61	6.39	45.61	6.26	45.61	6.04	45.61	5.59	45.54	5.07	45.41
320.1 0.098 Gr=51 9.09 1E+01 9.31 1E+01 8.97 1E+01 8.79 1E+01 8.42 1E+01 7.81 1E+01 7.07 1E+01 330.9 0.780 Sb=130 8.57 8.28 7.97 7.80 7.47 7.01 6.34 340.1 0.225 Pm-151 2.15 1E+01 2.09 1E+01 2.02 1E+01 1.99 1E+01 1.93 1E+01 1.80 1E+01 1.67 1E+01 340.5 0.422 Cs-136 7.24 7.04 6.77 6.62 6.36 5.95 5.42 342.1 0.067 Ag-111 7.90 1E+01 7.67 1E+01 7.22 1E+01 6.96 1E+01 6.48 1E+01 5.87 1E+01 344.3 0.266 Eu-152 8.20 7.97 7.75 7.58 7.33 6.88 6.28	318.9	0.192	Rh-105	7.76	1E+01	7.45	1E+01	7.15	1E+01	7.01	1E+01	6.76	1E+01	6.28	1E+01	5.67	1E+01
330.5 0.760 357 6.28 7.97 7.80 7.47 7.01 6.34 340.1 0.225 Pm-151 2.15 1E+01 2.09 1E+01 2.02 1E+01 1.99 1E+01 1.93 1E+01 1.80 1E+01 1.67 1E+01 340.5 0.422 Cs-136 7.24 7.04 6.77 6.62 6.36 5.95 5.42 342.1 0.067 Ag-111 7.90 1E+01 7.67 1E+01 7.22 1E+01 6.96 1E+01 6.48 1E+01 5.87 1E+01 344.3 0.266 Eu-152 8.20 7.97 7.75 7.58 7.33 6.88 6.28	320.1 220.0	0.098	Ur-01	9.69	1E+01	9.31	16+01	8.9/	1E+01	8.79	16+01	8.42 7 / 7	16+01	7.81	1E+01	1.07	1E+01
340.1 0.223 Pm=131 2.13 1e+01 2.03 1e+01 1.93 1e+01 1.80 1e+01 1.67 1e+01 340.5 0.422 Cs=136 7.24 7.04 6.77 6.62 6.36 5.95 5.42 342.1 0.067 Ag=111 7.90 1E+01 7.67 1E+01 7.32 1E+01 7.20 1E+01 6.48 1E+01 5.87 1E+01 344.3 0.266 Eu=152 8.20 7.97 7.75 7.58 7.33 6.88 6.28	330.9 240 1	0.780	3D-13U	8.5/ 0.1E	15:01	8.28	15+01	1.97	15+01	1.80	16+01	1.4/	16+01	1.01	16+01	0.34	15-01
342.1 0.067 Ag=111 7.90 1E+01 7.67 1E+01 7.32 1E+01 6.02 0.30 5.93 5.42 344.3 0.266 Eu=152 8.20 7.97 7.75 7.58 7.33 6.88 6.28	340.1 340 F	0.220	Ce=136	2.10 7.04	10701	2.09	15401	2.02 6 77	10+01	1.99	15+01	1.93	15401	1.8U 5.05	15+01	1.0/ 5.40	15-01
344.3 0.266 Eu-152 8.20 7.97 7.75 7.58 7.33 6.88 6.28	342.1	0.422	Δσ-111	7.24 7 QN	1F+01	7.04	1F+01	7.30	1E+01	0.02 7 20	1E+01	0.00 6 0 6	1F+01	6.49 6.49	1F+01	5.4Z	1F+01
	344.3	0.266	Eu-152	8.20	01	7.97		7.75		7.58		7.33	12.01	6.88	12.01	6.28	

エネルギー	放出比				放射性物	物質の土	:壌中に	おける釒	沿直分布	「を表す	パラメー	$-\beta$ β	(g•	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	0.	0	0.	1	0.	2	0.	3	0.	5	1.	0	2.	0
345.9	0.120	Hf-181	7.22		6.98		6.74		6.61		6.41		5.99		5.47	
364.5	0.812	I-131	6.83	1E+01	6.62	1E+01	6.36	1E+01	6.27	1E+01	5.99	1E+01	5.63	1E+01	5.09	1E+01
400.7	0.116	Se-75	9.46		9.08		8.82		8.61		8.28		7.77		7.12	
402.5	0.690	Cm-247	7.18	1E+01	6.88	1E+01	6.69	1E+01	6.24	1E+01	6.32	1E+01	5.88	1E+01	5.40	1E+01
414.8	0.833	Sb-126	1.07	1E+01	1.03	1E+01	9.92		9.84		9.47		8.85		8.10	
417.9	0.010	Te-127	6.61	1E+01	6.38	1E+01	6.18	1E+01	6.03	1E+01	5.89	1E+01	5.47	1E+01	5.05	1E+01
418.0	0.341	I-130	5.69		5.46		5.31		5.20		5.04		4.70		4.31	
427.9	0.294	Sb-125	2.17	1E+01	2.16	1E+01	2.11	1E+01	2.08	1E+01	2.03	1E+01	1.91	1E+01	1.//	1E+01
435.1	0.180	1e-134	7.22	15.01	7.04	15.01	0.84	15.01	6.72	15.01	0.53	15.01	6.12	15.01	5.00	15.01
438.0	0.949	Zn-69m	7.04	1E+01	7.34	1E+01	7.13	1E+01	0.98	1E+01	0.74	1E+01	0.30	1E+01	5.79	1E+01
459.0	0.074	Te-129	3.30	1E+01	3.00	1E+01	3.04	1E+01	3.01	1E+01	3.37	1E+01	3.43	15+01	3.24	1E+01
462.8	0.000	Cs-138	5.51		5.32		5.00		5.00		4 89		4 57		4 20	
463.4	0.105	Sb-125	7.79		7.74		7.57		7.48		7.30		6.89		6.42	
469.4	0.175	Ru-105	8.31		8.06		7.88		7.71		7.46		7.02		6.46	
473.0	0.247	Sb-127	1.27	1E+01	1.23	1E+01	1.19	1E+01	1.17	1E+01	1.13	1E+01	1.06	1E+01	9.81	
477.6	0.103	Be-7	7.06	1E+01	6.79	1E+01	6.59	1E+01	6.46	1E+01	6.23	1E+01	5.85	1E+01	5.41	1E+01
479.5	0.253	W-187	1.97	1E+01	1.90	1E+01	1.86	1E+01	1.82	1E+01	1.77	1E+01	1.66	1E+01	1.55	1E+01
479.5	0.900	Y-90m	4.72	1E+01	4.58	1E+01	4.43	1E+01	4.33	1E+01	4.21	1E+01	3.92	1E+01	3.64	1E+01
482.0	0.830	Hf-181	5.19	1E+01	5.03	1E+01	4.89	1E+01	4.79	1E+01	4.64	1E+01	4.38	1E+01	4.08	1E+01
487.0	0.459	La-140	8.28		8.00		7.78		7.61		7.37		6.90		6.35	
497.1	0.889	Ru-103	6.22	1E+01	5.96	1E+01	5.82	1E+01	5.69	1E+01	5.53	1E+01	5.20	1E+01	4.82	1E+01
507.7	0.053	Zr-97	2.27		2.19		2.14		2.09		2.03		1.90		1.76	
511.0	0.301	Co-58	1.16	1E+01	1.12	1E+01	1.09	1E+01	1.07	1E+01	1.04	1E+01	9.71		8.99	
511.0	1.810	Na-22	3.17	1E+01	3.08	1E+01	2.99	1E+01	2.93	1E+01	2.84	1E+01	2.66	1E+01	2.47	1E+01
511.9	0.207	Rh-106	3.63	1E+01	3.49	1E+01	3.41	1E+01	3.34	1E+01	3.25	1E+01	3.04	1E+01	2.82	1E+01
526.5	0.450	SD-128	5.37	15+01	5.17	15:01	5.06	15:01	4.96	15+01	4.82	15+01	4.50	15+01	4.18	15+01
529.9	0.003	I-133 Nd-147	5.00 2.70	15+01	4.90	15+01	4./0	1E+01	4.00	1E±01	4.00	15+01	4.20	101	3.90	1E+01
536.1	0.131	NG-147 I-130	2.79	1E+01	2.02	1E+01	2.01	1E+01	2.70	1E+01	1.52	1E+01	2.07	1E+01	2.00	1E+01
537.3	0.330	Ba-140	4 43	1E+01	4.39	1E+01	4.30	1E+01	4 23	1E+01	4 1 5	1E+01	3.92	1E+01	3.67	1E+01
544.7	0.179	Sb-129	4 85	12.01	4.00	12.01	4 59	12.01	4 4 9	12.01	4 36	12.01	4.10	12.01	3.80	12.01
550.3	0.220	Pm-148	1.55	1E+01	1.50	1E+01	1.46	1E+01	1.43	1E+01	1.39	1E+01	1.30	1E+01	1.21	1E+01
550.3	0.944	Pm−148m	1.72	1E+01	1.68	1E+01	1.64	1E+01	1.60	1E+01	1.56	1E+01	1.45	1E+01	1.36	1E+01
551.5	0.059	W-187	4.63		4.50		4.41		4.31		4.21		3.96		3.70	
555.6	0.949	Y-91m	6.36	1E+01	6.18	1E+01	6.00	1E+01	5.88	1E+01	5.76	1E+01	5.38	1E+01	4.99	1E+01
566.0	0.183	Te-134	7.30		7.13		6.98		6.85		6.69		6.31		5.88	
569.3	0.150	Cs-134	3.58		3.48		3.39		3.32		3.23		3.03		2.83	
600.6	0.178	Sb-125	1.36	1E+01	1.35	1E+01	1.33	1E+01	1.31	1E+01	1.29	1E+01	1.23	1E+01	1.15	1E+01
602.7	0.979	Sb-124	2.17	1E+01	2.10	1E+01	2.06	1E+01	2.02	1E+01	1.96	1E+01	1.85	1E+01	1.72	1E+01
604.6	0.975	Cs-134	2.34	1E+01	2.28	1E+01	2.22	1E+01	2.17	1E+01	2.12	1E+01	1.99	1E+01	1.86	1E+01
606.6	0.050	Sb-125	3.82		3.82		3.76		3.71		3.65		3.47		3.26	
610.3	0.056	Ru-103	3.96		3.84		3.75		3.68		3.58		3.38		3.15	
018.4 601.0	0.073	W-187	5.70 1.74	15+01	0.03	15+01	0.01 1.65	15+01	0.39 1.62	15+01	0.20 1.50	15+01	4.98	15+01	4.00	15+01
628.7	0.098	Sb-128	3 75	1E+01	3.63	1E+01	3.55	1E+01	3.49	1E+01	3 40	1E+01	3.18	15+01	2.98	1E+01
630.0	0.886	Pm-148m	1.63	1E+01	1 60	1F+01	1 55	1F+01	1 53	1E+01	1 48	1E+01	1 40	1E+01	1.31	1F+01
635.9	0.113	Sb-125	8 65	12.01	8 68	12.01	8 5 3	12.01	8 40	12.01	8.25	12.01	7.87	12.01	7.37	12.01
636.2	0.360	Sb-128	4.36		4.22		4.13		4.06		3.95		3.70		3.47	
637.0	0.073	I-131	6.48		6.28		6.10		6.00		5.81		5.53		5.13	
641.3	0.474	La-142	9.32		9.08		8.87		8.69		8.45		7.95		7.40	
647.5	0.194	Te-133m	4.11		4.01		3.92		3.84		3.74		3.53		3.31	
657.7	0.947	Ag-110m	1.37	1E+01	1.33	1E+01	1.30	1E+01	1.28	1E+01	1.25	1E+01	1.18	1E+01	1.10	1E+01
657.9	0.983	Nb-97	5.46	1E+01	5.35	1E+01	5.21	1E+01	5.12	1E+01	5.02	1E+01	4.71	1E+01	4.40	1E+01
661.6	0.899	Ba-137m	5.53	1E+01	5.42	1E+01	5.29	1E+01	5.19	1E+01	5.08	1E+01	4.79	1E+01	4.49	1E+01
664.5	0.053	Ce-143	5.97		5.98		5.94		5.91		5.79		5.59		5.36	
666.3	0.997	Sb-126	1.34	1E+01	1.30	1E+01	1.27	1E+01	1.25	1E+01	1.22	1E+01	1.15	1E+01	1.07	1E+01
667.7	0.987	I-132	1.68	1E+01	1.63	1E+01	1.60	1E+01	1.57	1E+01	1.53	1E+01	1.45	1E+01	1.35	1E+01
668.5	0.961	I-130	1.67	1E+01	1.62	1E+01	1.59	1E+01	1.55	1E+01	1.52	1E+01	1.44	1E+01	1.34	1E+01
676.4	0.157	Ru-105	7.65	15.01	7.48	15,01	7.34	15.01	7.20	15:01	7.01	15.01	6.65	10.01	6.20	15.01
085./	0.353	50-12/	1.86	1E+01	1.82	15,01	1./8	15+01	1./4	15:01	1./1	101	1.61	1E+01	1.51	15+01
005.8	0.316	W-18/	2.53	16+01	2.4/	1E+01	2.42	1E+01	2.3/	1E+01	2.32	1E+01	2.20	16+01	2.07	1E+01
090.0 607.0	0.997	Sb-120	1.34	10-01	1.30	15-01	1.Z/ 2.60	15-01	1.20	15+01	1.22 2.55	10401	1.10 2.25	10+01	1.UX 2.12	15+01
037.0	0.203	50 120	0.30		0.19		0.09		0.04		0.00		0.00		0.10	

エネルギー	放出比		放射性物質の土壌中における鉛直分布を表すパラメータ eta $(g\cdot cm^{-2})$									cm ⁻²)				
(keV)	$(s^{-1}Bq^{-1})$	核種	0.0	0	0.	1	0.	2	0.	3	0.	5	1.	0	2.	0
720.5	0.538	Sb-126	7.25		7.09		6.90		6.81		6.64		6.28		5.87	
722.0	0.051	Ce-143	5.86		5.89		5.85		5.82		5.71		5.53		5.32	
723.3	0.197	Eu-154	6.95		6.81		6.67		6.55		6.38		6.07		5.69	
724.2	0.444	Zr-95	2.32	1E+01	2.27	1E+01	2.22	1E+01	2.17	1E+01	2.12	1E+01	2.00	1E+01	1.88	1E+01
724.3	0.473	Ru-105	2.32	1E+01	2.28	1E+01	2.23	1E+01	2.19	1E+01	2.14	1E+01	2.03	1E+01	1.90	1E+01
725.7	0.327	Pm-148m	6.10		5.97		5.83		5.73		5.59		5.29		4.96	
727.2	0.068	Bi-212	2.62	1E+01	2.57	1E+01	2.52	1E+01	2.46	1E+01	2.41	1E+01	2.28	1E+01	2.13	1E+01
739.5	0.122	Mo-99	3.03	1E+01	2.98	1E+01	2.93	1E+01	2.88	1E+01	2.81	1E+01	2.67	1E+01	2.51	1E+01
739.5	0.823	I-130	1.45	1E+01	1.40	1E+01	1.37	1E+01	1.36	1E+01	1.32	1E+01	1.25	1E+01	1.17	1E+01
742.6	0.151	Te-134	6.17		6.07		5.94		5.86		5.73		5.45		5.11	
743.3	1.000	Sb-128	1.22	1E+01	1.19	1E+01	1.17	1E+01	1.15	1E+01	1.12	1E+01	1.05	1E+01	9.92	
748.3	0.008	Pr-145	1.56	1E+01	1.53	1E+01	1.50	1E+01	1.48	1E+01	1.44	1E+01	1.37	1E+01	1.30	1E+01
754.0	1.000	Sb-128	1.23	1E+01	1.20	1E+01	1.17	1E+01	1.15	1E+01	1.12	1E+01	1.05	1E+01	9.96	
756.7	0.549	Zr-95	2.88	1E+01	2.81	1E+01	2.75	1E+01	2.70	1E+01	2.63	1E+01	2.49	1E+01	2.33	1E+01
763.9	0 2 2 4	Ag-110m	3 27		3 20		3 13		3.08		2 9 9		2 84		2 67	
765.8	1 000	Nb-95	5.06	1F+01	4 95	1E+01	4 84	1E+01	4 74	1F+01	4 64	1E+01	4 39	1E+01	4 1 2	1F+01
767.2	0.290	Te-134	1 19	1E+01	117	1E+01	1 15	1E+01	1 13	1E+01	1 10	1E+01	1.00	1E+01	9.93	12.01
772.6	0.200	I-132	1.10	1E+01	1.17	1E+01	1.10	1E+01	1 24	1E+01	1 20	1E+01	1 14	1E+01	1 07	1E+01
772.0	0.702	$T_{0}=131m$	1.01	1E+01	1.20	1E+01	0.01	12.01	0.7/	12.01	0.40	12.01	0 02	12.01	8 50	12.01
770.0	0.302	Te 15111	1.00		1.01	12.01	J.J.		J.74		102		2.02		2.50	
770.9 702 7	0.130	Eu-132 Sh-197	4.33		4.27		4.15		4.12		4.03		5.04 6.77		6.20	
703.7	1 000	SD-127	1.11	15:01	1.00	15+01	1.42	15+01	1.02	15+01	1.13	15+01	1.04	15:01	0.30	
793.4	0.100	SD-130	1.19	15-01	1.17	1E+01	1.14	IETUI	1.12	15-01	1.00	1E+01	1.04	15-01	9.74	
793.8	0.139	1e-131m	3.75	15.01	3.09	15.01	3.00	15.01	3.00	15.01	3.40	15.01	3.29	15.01	3.10	15.01
/95.8	0.851	Cs-134	2.09	1E+01	2.05	1E+01	1.99	1E+01	1.96	1E+01	1.91	1E+01	1.82	1E+01	1./1	1E+01
810.8	0.994	Co-58	3.97	1E+01	3.89	1E+01	3.80	1E+01	3.74	1E+01	3.63	1E+01	3.45	1E+01	3.25	1E+01
811.8	0.103	Eu-156	3.70		3.61		3.53		3.47		3.37		3.23		3.02	
812.8	0.430	Sb-129	1.21	1E+01	1.18	1E+01	1.15	1E+01	1.13	1E+01	1.10	1E+01	1.05	1E+01	9.85	
815.8	0.236	La-140	4.46		4.36		4.26		4.19		4.07		3.87		3.62	
818.5	0.997	Cs-136	1.87	1E+01	1.84	1E+01	1.79	1E+01	1.76	1E+01	1.71	1E+01	1.63	1E+01	1.54	1E+01
834.8	1.000	Mn-54	4.76	1E+01	4.66	1E+01	4.57	1E+01	4.48	1E+01	4.38	1E+01	4.17	1E+01	3.91	1E+01
839.4	1.000	Sb-130	1.20	1E+01	1.18	1E+01	1.15	1E+01	1.13	1E+01	1.10	1E+01	1.05	1E+01	9.86	
841.6	0.146	Eu-152m	1.85	1E+01	1.82	1E+01	1.80	1E+01	1.77	1E+01	1.74	1E+01	1.67	1E+01	1.58	1E+01
846.8	0.989	Mn-56	2.58	1E+01	2.52	1E+01	2.47	1E+01	2.43	1E+01	2.35	1E+01	2.25	1E+01	2.11	1E+01
846.8	0.999	Co-56	1.26	1E+01	1.23	1E+01	1.21	1E+01	1.18	1E+01	1.15	1E+01	1.09	1E+01	1.03	1E+01
847.0	0.954	I-134	1.50	1E+01	1.46	1E+01	1.43	1E+01	1.41	1E+01	1.37	1E+01	1.30	1E+01	1.23	1E+01
852.2	0.206	Te-131m	5.65		5.54		5.43		5.34		5.20		4.97		4.68	
856.7	0.176	Sb-126	2.43		2.38		2.31		2.29		2.23		2.12		1.99	
864.0	0.156	Te-133m	3.41		3.34		3.27		3.22		3.13		2.99		2.82	
873.2	0.115	Eu-154	4.15		4.07		3.98		3.92		3.82		3.67		3.46	
884.1	0.649	I-134	1.02	1E+01	1.00	1E+01	9.82		9.63		9.40		8.92		8.43	
884.7	0.729	Ag-110m	1.08	1E+01	1.06	1E+01	1.04	1E+01	1.03	1E+01	1.00	1E+01	9.50		8.96	
889.3	1.000	Sc-46	2.08	1E+01	2.04	1E+01	1.99	1E+01	1.96	1E+01	1.90	1E+01	1.81	1E+01	1.71	1E+01
911.3	0.290	Ac-228	1.35	1E+01	1.33	1E+01	1.31	1E+01	1.29	1E+01	1.26	1E+01	1.20	1E+01	1.13	1E+01
912.7	0.550	Te-133m	1.21	1E+01	1.19	1E+01	1.16	1E+01	1.14	1E+01	1.11	1E+01	1.06	1E+01	1.01	1E+01
914.6	0.200	Sb-129	5.71		5.60		5.46		5.39		5.24		5.00		4.72	
914.8	0.109	Te-133m	2.40		2.35		2.30		2.27		2.21		2.11		1.99	
914.8	0.115	Pm-148	8.47		8.30		8.11		8.01		7.80		7.39		6.98	
915.3	0.171	Pm-148m	3.27		3.22		3.14		3.10		3.03		2.88		2.72	
934.5	0.139	Y-92	2.31	1E+01	2.27	1E+01	2.21	1E+01	2.18	1E+01	2.12	1E+01	2.03	1E+01	1.91	1E+01
934.9	0.190	Sb-130	2.31		2.27		2.21		2.18		2.12		2.04		1.92	
937.5	0.343	Ag-110m	5.15		5.05		4.93		4.89		4.74		4.53		4.28	
954.5	0.181	I-132	3.19		3.13		3.06		3.03		2.95		2.82		2.67	
963.3	0.120	Eu-152m	1.55	1E+01	1.53	1E+01	1.51	1E+01	1.50	1E+01	1.46	1E+01	1.41	1E+01	1.35	1E+01
964.1	0.145	Eu-152	4.98		4.92		4.83		4.77		4.66		4.47		4.26	
964.8	0.055	Ac-228	2.57		2.53		2.48		2.45		2.39		2.28		2.16	
966.4	0.077	Sb-129	2.21		2.16		2.11		2.08		2.03		1.94		1.84	
969.2	0.175	Ac-228	8.20		8.11		7.95		7.85		7.65		7.31		6.92	
984.5	0.278	Np-238	1.77	1E+01	1.77	1E+01	1.74	1E+01	1.72	1E+01	1.67	1E+01	1.60	1E+01	1.52	1E+01
996.3	0.103	Eu-154	3.77		3.73		3.64		3.60		3.50		3.38		3.21	
1004 8	0.174	Eu-154	6.38		6.29		6.16		6.10		5.94		5.70		5.41	
1009.8	0 2 9 8	Cs-138	5 78		5.67		5.53		5 47		5.33		5 09		4 81	
1013.8	0 202	Pm-148m	3.92		3.86		3 76		3 73		3 65		3 48		3 29	
1025.9	0.096	Np-238	6 16		614		6.01		5.96		5.00		5.53		5 29	
1028.5	0 203	Nn-238	1.20	1F+01	1.30	1E+01	1 97	1E+01	1 26	1F+01	1 99	1E+01	1 1 2	1E+01	1 1 2	1F+01
	0.200	200	1.00		1.00	12.01	1.27	12.01	1.20	12.01	1.22	01	1.10		1.12	12.01

エネルギー	放出比			-	放射性物	物質の土	:壌中に	おける釿	台直分布	īを表す	パラメー	-9 E	} (g•	cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	0.	0	0.	1	0.	2	0.	3	0.	5	1.	0	2.	0
1030.1	0.126	Sb-129	3.65		3.57		3.49		3.44		3.36		3.22		3.04	
1038.8	0.080	I-135	2.26		2.22		2.17		2.14		2.08		1.99		1.89	
1048.1	0.798	Cs-136	1.54	1E+01	1.52	1E+01	1.49	1E+01	1.47	1E+01	1.43	1E+01	1.37	1E+01	1.30	1E+01
1072.6	0.150	I-134	2.42		2.36		2.33		2.30		2.24		2.14		2.03	
1076.6	0.088	Rb-86	4.09	1E+01	4.01	1E+01	3.92	1E+01	3.86	1E+01	3.74	1E+01	3.59	1E+01	3.42	1E+01
1085.9	0.099	Eu-152	3.45		3.41		3.35		3.31		3.24		3.14		2.99	
1099.2	0.565	Fe-59	2.11	1E+01	2.06	1E+01	2.02	1E+01	2.00	1E+01	1.94	1E+01	1.86	1E+01	1.77	1E+01
1112.1	0.136	Eu-152	4.74		4.67		4.60		4.55		4.46		4.30		4.11	
1115.5	0.148	Ni-65	1.21	1E+01	1.18	1E+01	1.15	1E+01	1.15	1E+01	1.12	1E+01	1.07	1E+01	1.01	1E+01
1115.5	0.507	Zn-65	3.82	1E+01	3.75	1E+01	3.66	1E+01	3.62	1E+01	3.51	1E+01	3.37	1E+01	3.22	1E+01
1120.5	1.000	Sc-46	2.13	1E+01	2.09	1E+01	2.05	1E+01	2.02	1E+01	1.96	1E+01	1.89	1E+01	1.80	1E+01
1121.3	0.349	Ta-182	1.15	1E+01	1.13	1E+01	1.11	1E+01	1.10	1E+01	1.07	1E+01	1.03	1E+01	9.86	
1125.5	0.114	Te-131m	3.22		3.17		3.12		3.08		3.01		2.89		2.74	
1131.5	0.228	I-135	6.49		6.35		6.22		6.15		6.00		5.74		5.46	
1153.5	0.071	Eu-156	2.65		2.60		2.56		2.53		2.45		2.37		2.25	
1157.5	0.113	I-130	2.09		2.04		2.00		1.99		1.94		1.86		1.77	
1173.2	0.999	Co-60	1.80	1E+01	1.77	1E+01	1.74	1E+01	1.71	1E+01	1.67	1E+01	1.60	1E+01	1.52	1E+01
1189.0	0.164	Ta-182	5.46		5.35		5.25		5.21		5.08		4.89		4.69	
1204.9	0.003	Y-91	3.73	1E+01	3.65	1E+01	3.58	1E+01	3.55	1E+01	3.45	1E+01	3.31	1E+01	3.16	1E+01
1206.6	0.098	Te-131m	2.78		2.74		2.69		2.66		2.59		2.51		2.39	
1221.4	0.273	Ta-182	9.10		8.95		8.79		8.71		8.49		8.22		7.85	
1230.7	0.089	Eu-156	3.32		3.27		3.20		3.17		3.10		2.99		2.84	
1231.0	0.116	Ta-182	3.86		3.78		3.72		3.69		3.59		3.47		3.32	
1235.4	0.200	Cs-136	3.93		3.89		3.80		3.76		3.66		3.53		3.36	
1238.3	0.670	Co-56	8.80		8.61		8.51		8.37		8.16		7.83		7.47	
1242.4	0.067	Eu-156	2.52		2.47		2.43		2.40		2.34		2.26		2.15	
1260.4	0.289	I-135	8.34		8.16		8.02		7.94		7.74		7.45		7.07	
1274.4	0.355	Eu-154	1.33	1E+01	1.31	1E+01	1.29	1E+01	1.28	1E+01	1.25	1E+01	1.21	1E+01	1.16	1E+01
1274.5	0.999	Na-22	1.91	1E+01	1.89	1E+01	1.85	1E+01	1.83	1E+01	1.79	1E+01	1.72	1E+01	1.65	1E+01
1291.6	0.432	Fe-59	1.63	1E+01	1.61	1E+01	1.58	1E+01	1.56	1E+01	1.52	1E+01	1.46	1E+01	1.39	1E+01
1332.5	1.000	Co-60	1.83	1E+01	1.80	1E+01	1.76	1E+01	1.74	1E+01	1.70	1E+01	1.64	1E+01	1.57	1E+01
1354.5	0.026	La-141	4.63	1E+01	4.57	1E+01	4.49	1E+01	4.46	1E+01	4.34	1E+01	4.17	1E+01	3.97	1E+01
1368.6	1.000	Na-24	1.29	1E+01	1.26	1E+01	1.25	1E+01	1.24	1E+01	1.21	1E+01	1.16	1E+01	1.10	1E+01
1383.9	0.900	Sr-92	3.14	1E+01	3.08	1E+01	3.02	1E+01	3.01	1E+01	2.95	1E+01	2.82	1E+01	2.69	1E+01
1384.3	0.243	Ag-110m	3.82		3.74		3.68		3.67		3.58		3.45		3.29	
1408.0	0.209	Eu-152	7.46		7.38		7.29		7.25		7.11		6.91		6.64	
1435.9	0.763	Cs-138	1.54	1E+01	1.51	1E+01	1.48	1E+01	1.47	1E+01	1.43	1E+01	1.39	1E+01	1.32	1E+01
1457.6	0.087	I-135	2.57		2.51		2.48		2.45		2.40		2.31		2.21	
1460.8	0.107	K-40	3.30	1E+01	3.22	1E+01	3.18	1E+01	3.16	1E+01	3.09	1E+01	2.98	1E+01	2.82	1E+01
1465.1	0.222	Pm-148	1.73	1E+01	1.70	1E+01	1.67	1E+01	1.66	1E+01	1.63	1E+01	1.57	1E+01	1.50	1E+01
1481.8	0.235	Ni-65	1.97	1E+01	1.93	1E+01	1.91	1E+01	1.89	1E+01	1.85	1E+01	1.79	1E+01	1.70	1E+01
1505.0	0.131	Ag-110m	2.08		2.03		2.01		2.00		1.95		1.89		1.81	
1524.6	0.189	K-42	3.29	1E+01	3.24	1E+01	3.19	1E+01	3.19	1E+01	3.12	1E+01	3.00	1E+01	2.86	1E+01
1596.2	0.954	La-140	1.95	1E+01	1.91	1E+01	1.87	1E+01	1.87	1E+01	1.83	1E+01	1.77	1E+01	1.69	1E+01
1678.0	0.096	I-135	2.87		2.81		2.77		2.76		2.69		2.61		2.51	
1691.0	0.488	Sb-124	1.21	1E+01	1.19	1E+01	1.17	1E+01	1.17	1E+01	1.14	1E+01	1.11	1E+01	1.06	1E+01
1736.5	0.060	Sb-129	1.82		1.80		1.78		1.76		1.73		1.68		1.61	
1771.4	0.155	Co-56	2.13		2.08		2.06		2.04		2.01		1.94		1.86	
1791.2	0.078	I-135	2.33		2.29		2.26		2.24		2.20		2.13		2.05	
1810.7	0.272	Mn-56	7.73		7.59		7.52		7.43		7.31		7.12		6.81	
1901.3	0.072	La-142	1.59		1.56		1.55		1.54		1.51		1.46		1.40	
2091.0	0.056	Sb-124	1.42		1.40		1.38		1.38		1.36		1.32		1.27	
2113.0	0.143	Mn-56	4.14		4.09		4.05		4.01		3.95		3.86		3.71	
2218.0	0.152	Cs-138	3.21		3.16		3.13		3.11		3.06		2.98		2.86	
2397.8	0.133	La-142	3.01		2.98		2.95		2.94		2.89		2.82		2.73	
2542.7	0.100	La-142	2.28		2.26		2.24		2.22		2.19		2.14		2.07	
2598.6	0.167	Co-56	2.38		2.36		2.35		2.32		2.29		2.23		2.18	
2639.6	0.076	Cs-138	1.64		1.63		1.61		1.60		1.58		1.54		1.49	
2754.0	0.999	Na-24	1.39	1E+01	1.38	1E+01	1.37	1E+01	1.36	1E+01	1.34	1E+01	1.31	1E+01	1.26	1E+01
3253.5	0.074	Co-56	1.08		1.07		1.07		1.05		1.05		1.02		1.00	

エネルギー	放出比				放射性物質の土壌中における鉛面					鉛直分布を表すパラメータ β (g・cm ⁻²)						
(keV)	$(s^{-1}Bq^{-1})$	核種	3.	0	5.	0	1	0	2	0	3	0	5	0	10	0
11.2	0.255	Pb-210	3.19	1E+01	2.82	1E+01	2.52	1E+01	2.35	1E+01	2.28	1E+01	2.26	1E+01	2.23	1E+01
12.7	0.081	Th-232	9.38	1E+01	8.15	1E+01	7.01	1E+01	6.32	1E+01	6.11	1E+01	5.86	1E+01	5.67	1E+01
12.7	0.089	Th-228	1.37	1E+01	1.06	1E+01	8.07		6.63		6.18		5.78		5.48	
13.4	0.079	U-236	1.34	1E+02	1.27	1E+02	1.21	1E+02	1.14	1E+02	1.13	1E+02	1.11	1E+02	1.09	1E+02
13.4	0.084	U-238	1./4	1E+02	1.64	1E+02	1.55	1E+02	1.44	1E+02	1.42	1E+02	1.39	1E+02	1.34	1E+02
13.4	0.094	U-234	0.24	1E+02	1.11 9.17	1E+02	7.10	1E+02 1E+01	9.30	1E+01	9.13	1E+01	8.88 5.97	1E+01	8.03 5.67	1E+01
13.4	0.102	0 232 Th-234	5.02	12.01	3.99	12.01	3 1 9	12.01	2 73	12.01	2.57		2 44		2 34	IL OI
13.7	0.562	Np-237	1.08	1E+01	8.61		6.78		5.79		5.40		5.10		4.90	
13.7	0.776	Th-231	2.56	1E+01	2.09	1E+01	1.69	1E+01	1.47	1E+01	1.38	1E+01	1.31	1E+01	1.26	1E+01
14.1	0.040	Pu-239	1.06	1E+02	9.56	1E+01	8.41	1E+01	7.50	1E+01	7.27	1E+01	6.94	1E+01	6.62	1E+01
14.1	0.082	Pu-242	1.31	1E+02	1.19	1E+02	1.04	1E+02	9.06	1E+01	8.59	1E+01	8.08	1E+01	7.58	1E+01
14.1	0.089	Pu-240	1.55	1E+02	1.52	1E+02	1.49	1E+02	1.45	1E+02	1.47	1E+02	1.46	1E+02	1.43	1E+02
14.1	0.102	Pu-238	1.69	1E+02	1.66	1E+02	1.64	1E+02	1.60	1E+02	1.61	1E+02	1.61	1E+02	1.57	1E+02
14.1	0.103	Pu-236	1.50	1E+02	1.45 0.17	1E+02	1.40	1E+02	1.36	1E+02	1.36 6.11	1E+02	1.35	1E+02	1.31	1E+02
14.4	0.303	AIII-241	9.30 2.35		1.82		1.36		1 1 2		1.03		9.62	1E-01	9.08	1E-01
14.8	0.081	Cm-244	1.55	1E+02	1.50	1E+02	1.43	1E+02	1.37	1E+02	1.36	1E+02	1.34	1E+02	1.30	1E+02
14.8	0.085	Cm-242	1.46	1E+02	1.44	1E+02	1.41	1E+02	1.38	1E+02	1.40	1E+02	1.39	1E+02	1.37	1E+02
14.8	0.098	Am-242	4.07		3.17		2.45		2.06		1.91		1.79		1.72	
14.8	0.461	Cm-243	2.08		1.57		1.15		9.23	1E-01	8.47	1E-01	7.80	1E-01	7.30	1E-01
14.8	0.471	Cm-245	2.76		2.12		1.60		1.33		1.22		1.14		1.09	
15.2	0.273	Am-242m	1.50	1E+02	1.42	1E+02	1.32	1E+02	1.26	1E+02	1.24	1E+02	1.22	1E+02	1.19	1E+02
15.5	0.161	Am-242	8.01	15.01	6.27	15.01	4.86	15.01	4.07	15.01	3.78	15.01	3.57	15.01	3.42	15.01
16.5	0.183	Mo-93 Nb-03m	8.39	1E+01	8.37	1E+01 1E+02	8.48 1.57	1E+01 1E+02	8.34 1.50	1E+01 1E+02	8.5/ 1.5/	1E+01	8.59	1E+01	8.40	1E+01 1E+02
16.6	0.000	Mo-93	1.51	1E+02	1.51	1E+02	1.54	1E+02	1.50	1E+02	1.54	1E+02	1.55	1E+02	1.52	1E+02
18.6	0.090	Mo-93	5.83	1E+01	5.83	1E+01	5.96	1E+01	5.84	1E+01	6.02	1E+01	6.01	1E+01	5.89	1E+01
20.1	0.184	Rh-103m	5.94	1E+02	5.92	1E+02	5.86	1E+02	5.90	1E+02	5.91	1E+02	5.98	1E+02	5.91	1E+02
20.2	0.349	Rh-103m	1.15	1E+03	1.16	1E+03	1.14	1E+03	1.15	1E+03	1.15	1E+03	1.17	1E+03	1.16	1E+03
22.7	0.094	Rh-103m	4.60	1E+02	4.67	1E+02	4.69	1E+02	4.79	1E+02	4.80	1E+02	4.86	1E+02	4.82	1E+02
25.3	0.410	Sn-117m	8.05		6.35		4.82		3.99		3.67		3.41		3.23	
25.6	0.146	Th-231	3.33	1E+01	2.84	1E+01	2.37	1E+01	2.10	1E+01	2.00	1E+01	1.91	1E+01	1.84	1E+01
20.4	0.156	5n-120 To-127m	1.08	1E+01	9.05	1E+01	7.40	1E+01	0.00	1E+01	6.24 6.46	1E+01	5.97	1E+01	5.75	1E+01
27.2	0.103	Te-129m	1.50	1E+01	1.19	1E+01	8.74	12.01	6.84	12.01	6 1 9	12.01	5 55	12.01	5.04	12.01
27.2	0.327	Te-125m	6.84	1E+01	6.81	1E+01	6.79	1E+01	6.77	1E+01	6.72	1E+01	6.69	1E+01	6.80	1E+01
27.5	0.193	Te-127m	1.29	1E+02	1.28	1E+02	1.26	1E+02	1.25	1E+02	1.23	1E+02	1.22	1E+02	1.23	1E+02
27.5	0.237	Te-129m	2.85	1E+01	2.26	1E+01	1.67	1E+01	1.30	1E+01	1.18	1E+01	1.06	1E+01	9.61	
27.5	0.611	Te-125m	1.30	1E+02	1.30	1E+02	1.30	1E+02	1.29	1E+02	1.28	1E+02	1.28	1E+02	1.30	1E+02
27.8	0.156	Te-129	1.03	1E+01	7.96	45.04	5.84	15.01	4.56	15.01	4.14	45.04	3.74	45.04	3.42	45.04
29.4	0.152	Np-237	2.72	1E+01	2.28	1E+01	1.88 5.01	1E+01	1.63 E 01	1E+01	1.54	1E+01	1.46	1E+01	1.41	1E+01
29.5	0.165	I-129 I-129	1 13	1E+01	5.93 1 1 2	1E+01 1E+02	5.61 1.11	1E+01 1E+02	1 11	1E+01	1 09	1E+01	1 09	1E+01	5.65 1 1 1	1E+01
30.6	0.092	Cs-134m	1.93	1E+01	1.62	1E+01	1.33	1E+01	1.15	1E+01	1.08	1E+01	1.00	1E+01	9.74	12.02
31.0	0.067	Te-127m	5.75	1E+01	5.79	1E+01	5.77	1E+01	5.74	1E+01	5.73	1E+01	5.66	1E+01	5.71	1E+01
31.0	0.068	Te-129m	1.06	1E+01	8.47		6.32		5.00		4.53		4.07		3.70	
31.0	0.170	Cs-134m	3.67	1E+01	3.08	1E+01	2.53	1E+01	2.19	1E+01	2.06	1E+01	1.94	1E+01	1.86	1E+01
31.0	0.212	Te-125m	5.83	1E+01	5.91	1E+01	5.93	1E+01	5.97	1E+01	5.93	1E+01	5.90	1E+01	6.06	1E+01
31.8	0.021	Ba-13/m	1.88	1E-01	1.48	1E-01	1.08	1E-01	8.41	1E-02	1.62	1E-02	6.82	1E-02	6.20	1E-02
32.2	0.038	Ba-13/m 1–120	3.00 5.12	1E-01	2.79 5.24	1E-01	2.04 5.28	1E-01	1.00	1E-01	1.40	1E-01	5.30	1E-01	5.46	1E-01
35.0	0.050	Cs-134m	1.37	1E+01	1 18	1E+01	9.20	12.01	8 72	12.01	8.22	12.01	7.83	12.01	7 53	12.01
35.5	0.067	Te-125m	2.39	1E+01	2.47	1E+01	2.55	1E+01	2.61	1E+01	2.62	1E+01	2.62	1E+01	2.68	1E+01
38.7	0.223	Nd-147	1.24	1E+01	1.03	1E+01	8.15		6.73		6.23		5.74		5.32	
39.6	0.075	I-129	4.25	1E+01	4.44	1E+01	4.58	1E+01	4.72	1E+01	4.72	1E+01	4.75	1E+01	4.86	1E+01
43.0	0.118	Eu-155	1.78	1E+01	1.56	1E+01	1.36	1E+01	1.23	1E+01	1.17	1E+01	1.13	1E+01	1.10	1E+01
59.5	0.345	U-237	3.26	1E+01	2.86	1E+01	2.45	1E+01	2.19	1E+01	2.07	1E+01	1.97	1E+01	1.91	1E+01
59.5	0.359	Am-241	2.17	1E+02	2.11	1E+02	2.06	1E+02	2.01	1E+02	2.00	1E+02	1.99	1E+02	1.97	1E+02
04.3 74 7	0.096	3n-120 Am-949	2.59 1 0 2	1E+01	2.41 1 20	1E+01 1E+02	2.20	1E+01 1E+∩?	2.08 1.62	1E+01 1E+∩?	2.01	1E+01	1.9/ 150	1E+01	1.93	1E+01 1E+02
74.8	0.104	Pb-212	1.55	1E+01	9.10	12.02	7.77	12,02	6.80	12.02	6.41	12.02	6.06	12.02	5 79	12.02
77.1	0.176	Pb-212	1.76	1E+01	1.55	1E+01	1.33	1E+01	1.17	1E+01	1.10	1E+01	1.04	1E+01	9.92	
84.2	0.067	Th-231	7.42	1E+01	7.16	1E+01	6.83	1E+01	6.63	1E+01	6.47	1E+01	6.38	1E+01	6.28	1E+01
86.5	0.123	Np-237	8.02	1E+01	7.57	1E+01	7.07	1E+01	6.70	1E+01	6.51	1E+01	6.37	1E+01	6.27	1E+01

エネルギー	放出比				放射性物	性物質の土壌中における鉛直				鉛直分布を表すパラメータ β				cm ⁻²)		
(keV)	$(s^{-1}Bq^{-1})$	核種	3.	0	5.	0	1	0	2	0	30	C	5	0	10	0
86.5	0.309	Eu-155	8.48	1E+01	7.87	1E+01	7.38	1E+01	7.01	1E+01	6.79	1E+01	6.70	1E+01	6.59	1E+01
86.9	0.089	Sn-126	2.85	1E+01	2.71	1E+01	2.56	1E+01	2.44	1E+01	2.39	1E+01	2.36	1E+01	2.34	1E+01
87.6	0.370	Sn-126	1.18	1E+02	1.13	1E+02	1.06	1E+02	1.02	1E+02	1.00	1E+02	9.83	1E+01	9.73	1E+01
91.1	0.279	Nd-147	3.40	1E+01	3.05	1E+01	2.64	1E+01	2.30	1E+01	2.18	1E+01	2.06	1E+01	1.94	1E+01
97.1	0.166	U-237	2.06	1E+01	1.89	1E+01	1.70	1E+01	1.56	1E+01	1.50	1E+01	1.46	1E+01	1.41	1E+01
98.4	0.157	Pa-233	1.19	1E+01	1.06	1E+01	9.12	15.01	8.01	15.01	7.59	15.01	7.21	15.01	6.84	15.01
99.6	0.14/	Cm-243	1.90	1E+01	1.70	1E+01	1.50	1E+01	1.35	1E+01	1.29	1E+01	1.24	1E+01	1.19	1E+01
99.0	0.137	Np=239 Cm=245	1.47	1E+01	1.32	1E+01	1.17	1E+01	1.05	1E+01	2.01	1E+01	9.00	1E+01	9.31	1E+01
101 1	0.105	011 240	3.00	1E+01	3 10	1E+01	2.00	1E+01	2.57	1E+01	2.20	1E+01	2.22	1E+01	2.17	1E+01
103.8	0.200	Am-242	7.08	1E+01	6.58	1E+01	6 1 1	1E+01	5 75	1E+01	5.58	1E+01	5 47	1E+01	5.37	1E+01
103.8	0.236	Cm-243	3.07	1E+01	2.76	1E+01	2.44	1E+01	2.18	1E+01	2.09	1E+01	2.01	1E+01	1.94	1E+01
103.8	0.251	Np-239	2.38	1E+01	2.14	1E+01	1.90	1E+01	1.71	1E+01	1.64	1E+01	1.57	1E+01	1.52	1E+01
103.8	0.295	Cm-245	4.98	1E+01	4.57	1E+01	4.14	1E+01	3.84	1E+01	3.71	1E+01	3.63	1E+01	3.54	1E+01
105.3	0.206	Eu-155	6.12	1E+01	5.77	1E+01	5.49	1E+01	5.26	1E+01	5.12	1E+01	5.07	1E+01	5.02	1E+01
106.1	0.272	Np-239	2.60	1E+01	2.34	1E+01	2.07	1E+01	1.87	1E+01	1.79	1E+01	1.73	1E+01	1.66	1E+01
117.3	0.066	Cm-245	1.15	1E+01	1.05	1E+01	9.61		8.96		8.66		8.47		8.32	
121.1	0.173	Se-75	7.66		6.84		5.96		5.30		5.06		4.82		4.61	
122.1	0.855	Co-57	1.21	1E+02	1.10	1E+02	1.01	1E+02	9.24	1E+01	8.94	1E+01	8.70	1E+01	8.50	1E+01
127.5	0.141	Cs-134m	1.13	1E+02	1.09	1E+02	1.03	1E+02	9.79	1E+01	9.56	1E+01	9.36	1E+01	9.23	1E+01
133.0	0.419	Hf-181	1.44	1E+01	1.29	1E+01	1.11	1E+01	9.70	45.04	9.25	15.01	8.72	45.04	8.25	45.04
133.5	0.111	Ce-144	1.08	1E+02	1.00	1E+02	9.29	1E+01	8.65	1E+01	8.46	1E+01	8.23	1E+01	8.09	1E+01
130.0	0.590	Se-75	2.70	1E+01	2.42	1E+01	1.12	1E+01	1.90	1E+01	1.81	1E+01	1./3	1E+01	1.00	1E+01
130.5	0.100	$T_{c}=90m$	1.00	1E+01	1.43	1E+01	1.30	1E+01	0.38	1E+01	9.09	1E+01	8.80	1E+01	8.61	1E+01
143.8	0.030	10-235	1.24	1E+02	1.13	1E+02	9.60	11,02	8 74		8.35	12.01	8.07	12.01	7.86	12.01
145.4	0.484	Ce-141	1.16	1E+02	1.00	1E+02	9.67	1E+01	8.93	1E+01	8.65	1E+01	8.39	1E+01	8.19	1E+01
158.6	0.864	Sn-117m	1.05	1E+02	9.70	1E+01	8.79	1E+01	8.10	1E+01	7.79	1E+01	7.57	1E+01	7.40	1E+01
159.0	0.840	Te-123m	1.07	1E+02	9.91	1E+01	8.98	1E+01	8.29	1E+01	8.01	1E+01	7.72	1E+01	7.57	1E+01
162.6	0.062	Ba-140	6.77		6.08		5.25		4.58		4.36		4.10		3.86	
165.9	0.238	Ba-139	9.85	1E+01	8.96	1E+01	8.01	1E+01	7.26	1E+01	7.01	1E+01	6.74	1E+01	6.51	1E+01
174.9	0.095	Cm-245	1.84	1E+01	1.72	1E+01	1.60	1E+01	1.52	1E+01	1.48	1E+01	1.45	1E+01	1.43	1E+01
181.1	0.061	Mo-99	8.64		7.80		6.67		5.81		5.48		5.13		4.80	
185.7	0.572	U-235	6.59	1E+01	6.06	1E+01	5.42	1E+01	4.97	1E+01	4.82	1E+01	4.64	1E+01	4.55	1E+01
186.0	0.033	Ra-226	8.39	1E+01	7.72	1E+01	6.90	1E+01	6.32	1E+01	6.10	1E+01	5.88	1E+01	5.73	1E+01
202.5	0.958	Y-90m	3.01	1E+01	2./4	1E+01	2.38	IE+01	2.11	1E+01	2.03	1E+01	1.92	1E+01	1.83	1E+01
203.3	0.050	U-230	5.90 3.20	15+01	0.44 3.11	1E+01	4.91 2.80	1E+01	4.50	1E+01	4.37	1E+01	4.ZI 2.61	1E+01	4.11	1E+01
200.0	0.210	U-237 To-134	5.20 5.46	IE+01	4 96	1E+01	2.09 1 20	1E+01	2.73	15+01	2.07	1E+01	2.01	1E+01	2.37	1E+01
210.5	0.225	Cm-243	1 68	1F+01	1.56	1E+01	1 43	1E+01	1.32	1F+01	1 28	1E+01	1 24	1F+01	1 21	1F+01
228.2	0.113	Np-239	1.30	1E+01	1.00	1E+01	1.11	1E+01	1.02	1E+01	1.00	1E+01	9.73	12.01	9.44	12:01
228.2	0.882	Te-132	7.77	1E+01	7.24	1E+01	6.54	1E+01	5.97	1E+01	5.77	1E+01	5.60	1E+01	5.42	1E+01
234.7	0.261	Nb-95m	7.88	1E+01	7.27	1E+01	6.50	1E+01	5.92	1E+01	5.70	1E+01	5.50	1E+01	5.30	1E+01
238.6	0.434	Pb-212	6.11	1E+01	5.68	1E+01	5.17	1E+01	4.74	1E+01	4.58	1E+01	4.43	1E+01	4.29	1E+01
241.0	0.040	Ra-224	7.59	1E+01	7.00	1E+01	6.22	1E+01	5.68	1E+01	5.47	1E+01	5.27	1E+01	5.07	1E+01
264.7	0.591	Se-75	3.17	1E+01	2.91	1E+01	2.61	1E+01	2.39	1E+01	2.31	1E+01	2.24	1E+01	2.16	1E+01
266.9	0.068	Y-93	1.79	1E+01	1.62	1E+01	1.39	1E+01	1.21	1E+01	1.13	1E+01	1.06	1E+01	9.85	
275.2	0.068	Pm-151	4.51		4.15		3.69		3.32		3.18		3.05		2.90	
277.6	0.140	Cm-243	2.32	1E+01	2.17	1E+01	2.00	1E+01	1.85	1E+01	1.80	1E+01	1.77	1E+01	1.72	1E+01
277.6	0.144	Np-239	1.74	1E+01	1.62	1E+01	1.50	1E+01	1.41	1E+01	1.36	1E+01	1.33	1E+01	1.30	1E+01
278.0	0.209	1e-134	5.42	15+01	4.98	15+01	4.36	15+01	3.89	15:01	3.70	15+01	3.52		3.32	
279.0	0.252	Se-/5 Dm-1/0	1.37	IE+01	1.20	1E+01	1.13	1E+01	1.04	1E+01	1.00	1E+01	9.75		9.30	
200.9	0.001	Co-143	3.45	1E+01	3 19	1E+01	1.44	1E+01	2 59	1E+01	1.24 2.48	1E+01	2.19	1E+01	2.26	1E+01
300 1	0.420	Pa-233	5.45 6.67		617	12.01	5.58	12,01	5 11	12.01	4 92	12.01	4 78	12.01	4 58	12.01
306.1	0.051	Rh-105	1.42	1E+01	1.30	1E+01	1.16	1E+01	1.05	1E+01	1.01	1E+01	9.74		9.27	
312.0	0.386	Pa-233	3.90	1E+01	3.62	1E+01	3.29	1E+01	3.01	1E+01	2.90	1E+01	2.81	1E+01	2.70	1E+01
314.1	0.610	Sb-128	4.76		4.35		3.80		3.35		3.17		3.00	-	2.82	
318.9	0.192	Rh-105	5.39	1E+01	4.92	1E+01	4.39	1E+01	4.00	1E+01	3.84	1E+01	3.71	1E+01	3.53	1E+01
320.1	0.098	Cr-51	6.68	1E+01	6.13	1E+01	5.48	1E+01	4.97	1E+01	4.79	1E+01	4.62	1E+01	4.40	1E+01
330.9	0.780	Sb-130	5.95		5.45		4.75		4.21		3.98		3.75		3.52	
340.1	0.225	Pm-151	1.58	1E+01	1.46	1E+01	1.31	1E+01	1.19	1E+01	1.14	1E+01	1.10	1E+01	1.05	1E+01
340.5	0.422	Cs-136	5.07		4.67		4.07		3.58		3.36		3.16		2.98	
342.1	0.067	Ag-111	5.55	1E+01	5.11	1E+01	4.56	1E+01	4.16	1E+01	4.00	1E+01	3.85	1E+01	3.69	1E+01
344.3	0.266	Eu-152	5.94		5.48		4.77		4.22		3.98		3.75		3.50	

エネルギー	放出比			放射性物質の土	:壌中における釒	沿直分布を表す	パラメータ β	(g • cm ⁻²)	
(keV)	$(s^{-1}Bq^{-1})$	核種	3.0	5.0	10	20	30	50	100
345.9	0.120	Hf-181	5.16	4.77	4.27	3.87	3.75	3.58	3.44
364.5	0.812	I-131	4.84 1E+0	1 4.47 1E+01	3.98 1E+01	3.62 1E+01	3.46 1E+01	3.33 1E+01	3.18 1E+01
400.7	0.116	Se-75	6.79	6.33	5.80	5.39	5.23	5.10	4.96
402.5	0.690	Cm-247	5.12 1E+0	1 4.72 1E+01	4.22 1E+01	3.84 1E+01	3.71 1E+01	3.56 1E+01	3.42 1E+01
414.8	0.833	Sb-126	7.63	7.05	6.22	5.57	5.34	5.05	4.78
417.9	0.010	Te-127	4.79 1E+0	1 4.42 1E+01	3.96 1E+01	3.62 1E+01	3.48 1E+01	3.36 1E+01	3.21 1E+01
418.0	0.341	I-130	4.05	3.74	3.30	2.96	2.84	2.69	2.55
427.9	0.294	Sb-125	1.68 1E+0	1 1.57 1E+01	1.40 1E+01	1.27 1E+01	1.22 1E+01	1.16 1E+01	1.11 1E+01
435.1	0.186	le-134	5.33	4.97	4.43	4.03	3.88	3.69	3.53
438.6	0.949	Zn-69m	5.4/ 1E+0	1 5.07 1E+01	4.54 1E+01	4.12 1E+01	3.97 1E+01	3.81 1E+01	3.67 1E+01
459.6	0.074	Te-129	3.08 IE+0	1 2.88 IE+01	2.59 IE+01	2.37 IE+01	2.29 IE+01	2.18 IE+01	2.09 IE+01
401.0	0.099	1e-134	2.88	2.69	2.40	2.19	2.11	2.01	1.93
402.8	0.307	CS-138	3.94	3.03	3.10 5.10	2.79	2.01	2.44 4.07	2.28
403.4	0.105	SD-125	6.00	5.09	5.10	4.04	4.49	4.27	4.00
409.4	0.175	Ru-105	0.09	0.08 0.50	0.00 7.65	4.00	4.38	4.15	3.95
473.0	0.247	30-127 Bo-7	5.20 5.10 1E+0	0.J9 1 / 76 1E+01	7.05 4.25 1E+01	0.91 3.86 1E+01	0.05 3.74 1E+01	0.31 3.57 1E+01	0.04 3.44 1E+01
477.0	0.103	De-7 W-197	1 47 1E+0	1 4.70 IE+01	4.23 1E+01	3.80 TE+01	3.74 TE+01	3.37 TE+01	0.85
479.5	0.200	Y-90m	3.44 1E+0	1 3.22 1E+01	2.90 1E+01	2.67 1E+01	2.59 1E+01	2.49 1E+01	2.41 1E+01
482.0	0.300	Hf-181	3.87 1E+0	1 3.62 1E+01	3 29 1E+01	3.02 1E+01	2.05 1E+01	2.43 1E+01	2.41 1E+01
487.0	0.000	la-140	5.99	5.54	4 84	4.28	4.03	3 75	3.53
497.1	0.889	Ru-103	4.54 1F+0	1 422 1F+01	3.79 1E+01	3 44 1F+01	3 34 1F+01	3.18 1F+01	3.05 1F+01
507.7	0.053	Zr-97	1.66	1.54	1.38	1.24	1.18	1.11	1.06
511.0	0.301	Co-58	8.47	7.91	7.01	6.33	6.04	5.70	5.43
511.0	1.810	Na-22	2.33 1E+0	1 2.16 1E+01	1.91 1E+01	1.71 1E+01	1.64 1E+01	1.53 1E+01	1.46 1E+01
511.9	0.207	Rh-106	2.67 1E+0	1 2.49 1E+01	2.21 1E+01	2.00 1E+01	1.93 1E+01	1.84 1E+01	1.75 1E+01
526.5	0.450	Sb-128	3.95	3.69	3.27	2.97	2.85	2.69	2.57
529.9	0.863	I-133	3.74 1E+0	1 3.49 1E+01	3.12 1E+01	2.82 1E+01	2.74 1E+01	2.59 1E+01	2.48 1E+01
531.0	0.131	Nd-147	2.50 1E+0	1 2.40 1E+01	2.25 1E+01	2.10 1E+01	2.06 1E+01	2.00 1E+01	1.94 1E+01
536.1	0.990	I-130	1.25 1E+0	1 1.16 1E+01	1.04 1E+01	9.43	9.06	8.62	8.20
537.3	0.244	Ba-140	3.49 1E+0	1 3.28 1E+01	2.96 1E+01	2.71 1E+01	2.63 1E+01	2.52 1E+01	2.42 1E+01
544.7	0.179	Sb-129	3.57	3.34	2.95	2.65	2.52	2.38	2.24
550.3	0.220	Pm-148	1.14 1E+0	1 1.06 1E+01	9.37	8.37	7.98	7.45	7.07
550.3	0.944	Pm-148m	1.28 1E+0	1 1.20 1E+01	1.07 1E+01	9.72	9.37	8.92	8.52
551.5	0.059	W-187	3.52	3.32	2.99	2.73	2.65	2.53	2.43
555.6	0.949	Y-91m	4.75 1E+0	1 4.42 1E+01	3.98 1E+01	3.62 1E+01	3.50 1E+01	3.34 1E+01	3.21 1E+01
566.0	0.183	Te-134	5.58	5.23	4.74	4.36	4.21	4.04	3.87
569.3	0.150	Cs-134	2.67	2.50	2.23	2.02	1.95	1.84	1.75
600.6	0.178	Sb-125	1.10 IE+0	I I.03 IE+01	9.38	8.63	8.41	8.05	7.69
604.6	0.979	SD-124	1.02 IE+0	1 1.01 IE+UI	1.34 IE+UI	1.20 IE+01	1.14 IE+UI	1.08 IE+01	1.01 IE+01
606.6	0.975	CS-134 Sh-125	2.11	203	1.40 IE+01 2.66	1.34 TE+01	1.29 IE+01	1.22 IE+01	1.17 TE+01 2.18
610.3	0.056	SD 123 Ru-103	2.98	2.93	2.00	2.45	2.30	2.20	2.10
618.4	0.000	W-187	4 4 5	4.21	3.82	3.51	3.42	3.26	3.13
621.8	0.098	Rh-106	1.32 1F+0	1 1.23 1F+01	1.11 1F+01	1.01 1F+01	9.82	9.37	8.92
628.7	0.310	Sb-128	2.82	2.64	2.38	2.17	2.09	1.99	1.90
630.0	0.886	Pm-148m	1.24 1E+0	1 1.16 1E+01	1.05 1E+01	9.58	9.25	8.84	8.43
635.9	0.113	Sb-125	7.09	6.68	6.07	5.60	5.45	5.24	5.01
636.2	0.360	Sb-128	3.30	3.08	2.77	2.53	2.43	2.33	2.21
637.0	0.073	I-131	4.93	4.63	4.23	3.94	3.84	3.71	3.58
641.3	0.474	La-142	6.96	6.44	5.66	5.02	4.71	4.40	4.09
647.5	0.194	Te-133m	3.13	2.95	2.63	2.38	2.27	2.16	2.06
657.7	0.947	Ag-110m	1.04 1E+0	1 9.74	8.71	7.89	7.58	7.20	6.80
657.9	0.983	Nb-97	4.19 1E+0	1 3.91 1E+01	3.54 1E+01	3.23 1E+01	3.13 1E+01	2.98 1E+01	2.83 1E+01
661.6	0.899	Ba-137m	4.26 1E+0	1 4.02 1E+01	3.61 1E+01	3.30 1E+01	3.20 1E+01	3.05 1E+01	2.89 1E+01
664.5	0.053	Ce-143	5.18	4.94	4.59	4.30	4.19	4.06	3.93
666.3	0.997	Sb-126	1.02 1E+0	1 9.55	8.64	7.91	7.65	7.32	6.95
667.7	0.987	I-132	1.28 1E+0	1 1.20 1E+01	1.08 1E+01	9.83	9.44	9.00	8.52
668.5	0.961	I-130	1.27 1E+0	1 1.19 1E+01	1.08 1E+01	9.87	9.53	9.13	8.69
676.4	0.157	Ru-105	5.89	5.55	5.02	4.62	4.48	4.28	4.08
685.7	0.353	Sb-12/	1.44 1E+0	1 1.35 1E+01	1.22 1E+01	1.12 1E+01	1.09 1E+01	1.04 1E+01	9.95
085.8	0.316	W-18/	1.98 1E+0	1 1.88 1E+01	1./I IE+01	1.58 IE+01	1.54 IE+01	1.48 IE+01 7.45	1.42 IE+01
090.0	0.997	3D-120	1.U3 1E+U	۱ ۵.۶۱ ۵.۶۸	0.72 0.52	0.UI 0.00	1.10 2.25	7.40 2.15	7.07 2.0F
097.0	0.209	SU-120	2.90	2.19	2.00	2.02	2.20	2.15	2.00

エネルギー	放出比		放射性物質の土壌中における鉛直分布を表						iを表す⁄	パラメー	$-\beta$ β	(g•	cm ⁻²)			
(keV)	$(s^{-1}Bq^{-1})$	核種	3.	0	5.	0	10	0	20)	30	C	50	0	10	0
720.5	0.538	Sb-126	5.59		5.26		4.77		4.39		4.25		4.07		3.87	
722.0	0.051	Ce-143	5.14		4.91		4.59		4.30		4.22		4.10		3.97	
723.3	0.197	Eu-154	5.43		5.15		4.62		4.20		4.05		3.84		3.65	
724.2	0.444	Zr-95	1.79	1E+01	1.69	1E+01	1.52	1E+01	1.39	1E+01	1.34	1E+01	1.28	1E+01	1.22	1E+01
724.3	0.473	Ru-105	1.81	1E+01	1.71	1E+01	1.55	1E+01	1.43	1E+01	1.39	1E+01	1.33	1E+01	1.27	1E+01
725.7	0.327	Pm-148m	4.72		4.45		4.04		3.70		3.60		3.45		3.31	
727.2	0.068	Bi-212	2.04	1E+01	1.91	1E+01	1.72	1E+01	1.55	1E+01	1.50	1E+01	1.42	1E+01	1.35	1E+01
/39.5	0.122	Mo-99	2.39	1E+01	2.26	1E+01	2.05	1E+01	1.90	1E+01	1.84	1E+01	1.//	1E+01	1.69	1E+01
/39.5	0.823	I-130	1.11	1E+01	1.05	1E+01	9.51		8.73		8.48		8.14		1.11	
742.0	1.000	1e-134	4.88		4.64		4.25		3.95		3.85		3./1		3.58	
743.3	0.000	30-120 Dr-145	9.40	1E+01	0.90	1E+01	0.00	1E+01	0.68		0.30		0.07		0.00	
754.0	1 000	Sh-128	9.50		8.93	12.01	8.12	12.01	5.00 7.47		7 20		6.03		6.61	
756.7	0.549	7r-95	2 23	1F+01	2 10	1E+01	1.91	1F+01	174	1E+01	1.68	1E+01	1 61	1F+01	1.54	1F+01
763.9	0.224	Ag-110m	2.54	12.01	2 38	12.01	2.15	12.01	1.96	12.01	1.89	12.01	1.80	12.01	1.71	12.01
765.8	1.000	Nb-95	3.92	1E+01	3.70	1E+01	3.34	1E+01	3.06	1E+01	2.97	1E+01	2.82	1E+01	2.70	1E+01
767.2	0.290	Te-134	9.46		8.98		8.24		7.69		7.50		7.24		6.98	
772.6	0.762	I-132	1.02	1E+01	9.61		8.68		7.97		7.74		7.36		7.00	
773.7	0.382	Te-131m	8.11		7.65		6.91		6.32		6.11		5.82		5.56	
778.9	0.130	Eu-152	3.48		3.30		2.99		2.74		2.64		2.53		2.40	
783.7	0.145	Sb-127	6.06		5.72		5.22		4.83		4.69		4.52		4.34	
793.4	1.000	Sb-130	9.29		8.78		7.97		7.32		7.07		6.76		6.48	
793.8	0.139	Te-131m	2.95		2.79		2.53		2.32		2.24		2.13		2.04	
795.8	0.851	Cs-134	1.63	1E+01	1.54	1E+01	1.40	1E+01	1.28	1E+01	1.25	1E+01	1.20	1E+01	1.14	1E+01
810.8	0.994	Co-58	3.10	1E+01	2.92	1E+01	2.66	1E+01	2.45	1E+01	2.37	1E+01	2.27	1E+01	2.17	1E+01
811.8	0.103	Eu-156	2.88		2.70		2.42		2.19		2.09		1.97		1.87	
812.8	0.430	Sb-129	9.40		8.84		8.01		7.30		7.02		6.68		6.36	
815.8	0.236	La-140	3.46		3.25		2.91		2.63		2.52		2.37		2.25	
818.5	0.997	Cs-136	1.46	1E+01	1.38	1E+01	1.26	1E+01	1.15	1E+01	1.11	1E+01	1.05	1E+01	1.02	1E+01
834.8	1.000	Mn-54	3.74	1E+01	3.53	1E+01	3.19	1E+01	2.93	1E+01	2.84	1E+01	2./1	1E+01	2.59	1E+01
839.4 941.6	0.146	5D-130 Eu-152m	9.42	15+01	8.90	15+01	8.13 1.22	15+01	1.47	15+01	1.23	15+01	0.94	15+01	0.00	15+01
846.8	0.140	Eu-152m Mn-56	2.01	1E+01	1.44	1E+01	1.32	1E+01	1.22	1E+01	1.10	1E+01	1.12	1E+01	1.00	1E+01
846.8	0.000	Co-56	9.78	12.01	9.17	12.01	8 24	12.01	7.41	12.01	7 10	12.01	6.67	12:01	6.36	12:01
847.0	0.000	I-134	1.17	1F+01	1.11	1F+01	1.00	1F+01	9.17		8 85		8 46		8.08	
852.2	0.206	Te-131m	4.49		4.25		3.87		3.54		3.44		3.28		3.14	
856.7	0.176	Sb-126	1.91		1.80		1.65		1.53		1.49		1.44		1.38	
864.0	0.156	Te-133m	2.70		2.55		2.31		2.12		2.05		1.96		1.87	
873.2	0.115	Eu-154	3.32		3.15		2.87		2.63		2.55		2.42		2.32	
884.1	0.649	I-134	8.04		7.60		6.93		6.32		6.15		5.86		5.61	
884.7	0.729	Ag-110m	8.57		8.09		7.37		6.75		6.54		6.26		5.98	
889.3	1.000	Sc-46	1.64	1E+01	1.55	1E+01	1.40	1E+01	1.28	1E+01	1.23	1E+01	1.17	1E+01	1.12	1E+01
911.3	0.290	Ac-228	1.09	1E+01	1.03	1E+01	9.39		8.66		8.37		8.02		7.69	
912.7	0.550	Te-133m	9.64		9.12		8.34		7.67		7.41		7.07		6.80	
914.6	0.200	Sb-129	4.51		4.27		3.89		3.56		3.44		3.28		3.15	
914.8	0.109	Te-133m	1.91		1.81		1.65		1.52		1.46		1.40		1.35	
914.8	0.115	Pm-148	6.70		6.29		5.72		5.22		5.05		4.80		4.57	
915.3	0.1/1	Pm-148m	2.61	15.01	2.48	15.01	2.28	15.01	2.11	15.01	2.07	15.01	1.99	15.01	1.92	15.01
934.5	0.139	Y-92	1.83	1E+01	1.74	1E+01	1.58	1E+01	1.45	1E+01	1.40	1E+01	1.34	1E+01	1.28	1E+01
934.9	0.190	SD-130	1.84		1./5		1.60		1.48		1.44		1.38		1.33	
937.5	0.343	Ag=110m 1_122	4.10		3.00 2/11		3.03		3.20 2.05		2.10		3.03		2.90	
063.3	0.101	Eu=152m	1 20	1E+01	1.94	1E+01	1 1 1	1E+01	1.06	1E+01	1.03	1E+01	0.91		0.49	
964.1	0.120	Eu-152	4 10		3.92	12.01	3.60	12.01	3.33	12.01	3.23	12.01	3.09		297	
964.8	0.055	Ac-228	2.08		1.97		1.80		1.67		1.61		1.55		1.49	
966.4	0.077	Sb-129	1.76		1.67		1.52		1.40		1.36		1.29		1.24	
969.2	0.175	Ac-228	6.65		6.30		5.79		5.34		5.18		4.98		4.78	
984.5	0.278	Np-238	1.46	1E+01	1.39	1E+01	1.26	1E+01	1.16	1E+01	1.12	1E+01	1.07	1E+01	1.03	1E+01
996.3	0.103	Eu-154	3.08		2.94		2.70		2.49		2.42		2.32		2.22	
1004.8	0.174	Eu-154	5.21		4.98		4.30		4.21		4.11		3.93		3.78	
1009.8	0.298	Cs-138	4.61		4.34		3.96		3.58		3.44		3.27		3.11	
1013.8	0.202	Pm-148m	3.17		3.02		2.79		2.60		2.55		2.47		2.39	
1025.9	0.096	Np-238	5.09		4.83		4.42		4.07		3.94		3.76		3.64	
1028.5	0.203	Np-238	1.08	1E+01	1.02	1E+01	9.36		8.63		8.33		7.97		7.69	

エネルギー	放出比				放射性物質の土壌中における鉛				台直分布	市を表す	パラメ・	ータ β	8 (g•	cm^{-2})		
(keV)	$(s^{-1}Bq^{-1})$	核種	3.	0	5.	0	1	0	2	0	3	0	5	0	10)0
1030.1	0.126	Sb-129	2.91		2.77		2.55		2.35		2.28		2.18		2.09	
1038.8	0.080	I-135	1.81		1.71		1.56		1.42		1.38		1.31		1.25	
1048.1	0.798	Cs-136	1.25	1E+01	1.19	1E+01	1.09	1E+01	1.01	1E+01	9.82		9.46		9.15	
1072.6	0.150	I-134	1.94		1.86		1.71		1.58		1.54		1.47		1.42	
1076.6	0.088	Rb-86	3.30	1E+01	3.14	1E+01	2.86	1E+01	2.64	1E+01	2.54	1E+01	2.44	1E+01	2.34	1E+01
1085.9	0.099	Eu-152	2.89		2.77		2.56		2.38		2.32		2.22		2.15	
1099.2	0.565	Fe-59	1.69	1E+01	1.61	1E+01	1.47	1E+01	1.36	1E+01	1.31	1E+01	1.25	1E+01	1.20	1E+01
1112.1	0.136	Eu-152	3.96		3.81		3.52		3.29		3.20		3.08		2.97	
1115.5	0.148	NI-65	9.69	45.04	9.17	45.04	8.41	45.04	1.14	15.01	7.46	15.01	7.09	45.04	6.81	15.01
1110.5	0.507	Zn-65	3.09	1E+01	2.94	1E+01	2.69	1E+01	2.49	1E+01	2.41	1E+01	2.30	1E+01	2.21	1E+01
1120.5	1.000	SC-40	1./3	1E+01	1.00	1E+01	1.51	1E+01	1.40	1E+01	1.30	1E+01	1.30	1E+01	1.25	1E+01
1121.3	0.349	Ta=102	9.02		9.10		0.47		7.09		7.02		2.05		1.00	
1121.5	0.114	1e-131111 1-135	5.24		2.55		2.33		2.15 4.17		2.13		2.05		3.68	
1153.5	0.220	Fu=156	2 16		2.05		1.87		1 74		1 66		1 50		1 52	
1157.5	0.113	I-130	1 70		1.63		1.07		1.74		1 40		1.36		1.32	
1173.2	0.999	Co-60	1.70	1E+01	1.00	1E+01	1.02	1E+01	1 18	1F+01	1 1 3	1E+01	1.00	1E+01	1.02	1F+01
1189.0	0.000	Ta-182	4 54	12.01	4.36	12.01	4 05	12.01	3 79	12.01	3.66	12.01	3.52	12.01	3 4 2	12.01
1204.9	0.003	Y-91	3.04	1F+01	2.89	1F+01	2 67	1E+01	2 46	1F+01	2.38	1E+01	2 27	1E+01	2 1 9	1F+01
1206.6	0.098	Te-131m	2 30	12.01	2 20	12.01	2.05	12.01	1.92	12.01	1.87	12.01	1.80	12.01	1.75	12.01
1221.4	0.273	Ta-182	7.59		7.34		6.83		6.39		6.18		5.94		5.76	
1230.7	0.089	Eu-156	2.74		2.60		2.39		2.22		2.13		2.04		1.96	
1231.0	0.116	Ta-182	3.21		3.10		2.88		2.71		2.62		2.52		2.44	
1235.4	0.200	Cs-136	3.25		3.10		2.89		2.72		2.64		2.54		2.48	
1238.3	0.670	Co-56	7.17		6.81		6.25		5.76		5.53		5.29		5.10	
1242.4	0.067	Eu-156	2.07		1.97		1.81		1.69		1.62		1.55		1.49	
1260.4	0.289	I-135	6.82		6.47		6.00		5.54		5.36		5.11		4.90	
1274.4	0.355	Eu-154	1.12	1E+01	1.08	1E+01	1.00	1E+01	9.38		9.18		8.86		8.58	
1274.5	0.999	Na-22	1.58	1E+01	1.51	1E+01	1.41	1E+01	1.32	1E+01	1.29	1E+01	1.24	1E+01	1.21	1E+01
1291.6	0.432	Fe-59	1.34	1E+01	1.29	1E+01	1.18	1E+01	1.10	1E+01	1.07	1E+01	1.02	1E+01	9.88	
1332.5	1.000	Co-60	1.51	1E+01	1.44	1E+01	1.33	1E+01	1.24	1E+01	1.20	1E+01	1.15	1E+01	1.10	1E+01
1354.5	0.026	La-141	3.83	1E+01	3.66	1E+01	3.36	1E+01	3.14	1E+01	3.01	1E+01	2.87	1E+01	2.75	1E+01
1368.6	1.000	Na-24	1.06	1E+01	1.00	1E+01	9.12		8.35		7.93		7.53		7.15	
1383.9	0.900	Sr-92	2.61	1E+01	2.48	1E+01	2.30	1E+01	2.15	1E+01	2.07	1E+01	1.98	1E+01	1.90	1E+01
1384.3	0.243	Ag-110m	3.19		3.06		2.84		2.70		2.63		2.55		2.48	
1408.0	0.209	Eu-152	6.45	45.04	6.27	45.04	5.85	15.01	5.57	15.01	5.43	15.01	5.27		5.12	
1435.9	0.763	US-138	1.28	1E+01	1.22	1E+01	1.13	1E+01	1.06	1E+01	1.01	1E+01	9.83		9.39	
1407.0	0.087	I-135	2.14 0.75	15.01	2.04	15.01	1.90	15.01	1.78	15.01	1.72	15.01	1.00	15.01	1.60	15.01
1400.0	0.107	N=40 Dm=140	2.75	15+01	1 20	15+01	1 20	1E+01	1.22	15+01	2.10	1E±01	2.09	1E+01	2.00	101
1403.1	0.222	FIII-140 Ni-65	1.45	1E+01	1.50	1E+01	1.29	1E+01	1.23	1E+01	1.19	1E+01	1.13	1E+01	1.11	1E+01
1505.0	0.200	Ag-110m	1.00	12.01	1.69	12.01	1.58	12.01	1.50	12.01	1.00	12.01	1 43	12.01	1.20	12.01
1524.6	0.189	K-42	2 78	1E+01	2.64	1E+01	2 4 5	1E+01	2 29	1E+01	2 2 1	1E+01	2 1 1	1E+01	2.03	1E+01
1596.2	0.954	La-140	1.64	1E+01	1.57	1E+01	1.46	1E+01	1.38	1E+01	1.34	1E+01	1.29	1E+01	1.25	1E+01
1678.0	0.096	I-135	2.43		2.33		2.19		2.06		2.01		1.93		1.88	
1691.0	0.488	Sb-124	1.03	1E+01	9.89		9.31		8.81		8.57		8.36		8.12	
1736.5	0.060	Sb-129	1.56		1.51		1.43		1.36		1.33		1.30		1.27	
1771.4	0.155	Co-56	1.80		1.74		1.63		1.53		1.49		1.44		1.41	
1791.2	0.078	I-135	2.00		1.92		1.80		1.71		1.67		1.61		1.56	
1810.7	0.272	Mn-56	6.63		6.38		6.01		5.65		5.54		5.34		5.20	
1901.3	0.072	La-142	1.36		1.30		1.22		1.14		1.11		1.07		1.03	
2091.0	0.056	Sb-124	1.24		1.20		1.14		1.09		1.08		1.06		1.03	
2113.0	0.143	Mn-56	3.62		3.50		3.32		3.16		3.11		3.01		2.94	
2218.0	0.152	Cs-138	2.81		2.71		2.58		2.46		2.41		2.35		2.29	
2397.8	0.133	La-142	2.65		2.56		2.42		2.30		2.25		2.18		2.11	
2542.7	0.100	La-142	2.03		1.96		1.86		1.77		1.74		1.68		1.64	
2598.6	0.167	Co-56	2.13		2.08		1.98		1.90		1.88		1.83		1.80	
2639.6	0.076	Cs-138	1.46		1.43		1.37		1.32		1.30		1.28		1.25	
2754.0	0.999	Na-24	1.25	1E+01	1.20	1E+01	1.14	1E+01	1.08	1E+01	1.06	1E+01	1.03	1E+01	9.91	15 61
3253.5	U.U/4	00-56	9.88	1E-01	9.68	1E-01	9.35	16-01	9.10	1E-01	9.05	1E-01	8.89	1E-01	8.83	1E-01

付録 3 放射性核種濃度と地上高 1m での線量率との関係

付表-3-1	放射性核種濃度と地上高1mでの線量率と	:の関係
	(土壌中指数分布の場合)	単合・

単位 : (μGy/h) / (kBq/m²)

_			放射性物質の土壌中における鉛直分布を表すパラメータ eta $(g\cdot cm^{-2})$											
核種	0.	0	0.	1	0.	2	0.	3	0.	5	1.	0	2.	0
Be-7	2.26	1E-04	2.04	1E-04	1.90	1E-04	1.81	1E-04	1.67	1E-04	1.46	1E-04	1.22	1E-04
Na-22	9.36	1E-03	8.47	1E-03	7.93	1E-03	7.53	1E-03	6.97	1E-03	6.09	1E-03	5.10	1E-03
Na-24	1.47	1E-02	1.33	1E-02	1.25	1E-02	1.19	1E-02	1.10	1E-02	9.70	1E-03	8.19	1E-03
K-40	6.19	1E-04	5.59	1E-04	5.24	1E-04	4.97	1E-04	4.62	1E-04	4.04	1E-04	3.41	1E-04
K-42 So-46	1.14 9.46	1E-03	1.03	1E-03	9.00	1E-04	9.17	1E-04	8.53	1E-04	7.40	1E-04	0.28	1E-04
Cr-51	2.18	1E-04	1.47	1E-04	1.29	1E-04	1.20	1E-04	1 09	1E-04	9.39	1E-05	4.02	1E-05
Mn-54	3.71	1E-03	3.30	1E-03	3.07	1E-03	2.92	1E-03	2.69	1E-03	2.35	1E-03	1.97	1E-03
Mn-56	6.74	1E-03	6.11	1E-03	5.73	1E-03	5.45	1E-03	5.05	1E-03	4.41	1E-03	3.71	1E-03
Fe-59	4.87	1E-03	4.42	1E-03	4.13	1E-03	3.93	1E-03	3.64	1E-03	3.18	1E-03	2.67	1E-03
Co-56	1.33	1E-02	1.20	1E-02	1.12	1E-02	1.06	1E-02	9.86	1E-03	8.64	1E-03	7.27	1E-03
Co-57	8.09	1E-04	5.51	1E-04	4.74	1E-04	4.35	1E-04	3.88	1E-04	3.28	1E-04	2.65	1E-04
Co-58	4.38	1E-03	3.89	1E-03	3.63	1E-03	3.44	1E-03	3.1/	1E-03	2.//	1E-03	2.32	1E-03
C0-00 Ni-65	2 20	1E-02	9.20	1E-03	0.01	1E-03	0.10	1E-03	1.59	1E-03	0.04 1 <i>1 1</i>	1E-03	1 21	1E-03
Zn-65	2.20	1E-03	2.00	1E-03	2.09	1E-03	1.70	1E-03	1.05	1E-03	1.58	1E-03	1.33	1E-03
Zn-69m	1.91	1E-03	1.72	1E-03	1.61	1E-03	1.52	1E-03	1.41	1E-03	1.23	1E-03	1.02	1E-03
Se-75	2.10	1E-03	1.69	1E-03	1.53	1E-03	1.43	1E-03	1.30	1E-03	1.12	1E-03	9.22	1E-04
Br-84	6.54	1E-03	5.93	1E-03	5.56	1E-03	5.29	1E-03	4.90	1E-03	4.30	1E-03	3.63	1E-03
Rb-86	3.95	1E-04	3.58	1E-04	3.35	1E-04	3.18	1E-04	2.94	1E-04	2.57	1E-04	2.16	1E-04
Sr-92	5.36	1E-03	4.86	1E-03	4.55	1E-03	4.32	1E-03	4.01	1E-03	3.51	1E-03	2.95	1E-03
Y-90m	2.88	1E-03	2.58	1E-03	2.41	1E-03	2.28	1E-03	2.10	1E-03	1.83	1E-03	1.53	1E-03
Y-91	1.48	1E-05	1.34	1E-05	1.25	1E-05	1.19	1E-05	1.10	1E-03	9.64	1E-00	8.10	1E-00
Y-92	1.06	1E-03	9.61	1E-03	2.02	1E-03	8.54	1E-03	7.91	1E-03	6.91	1E-03	5 79	1E-03
Y-93	3.60	1E-04	3.62	1E-04	3.05	1E-04	2.90	1E-04	2.69	1E-04	2.35	1E-04	1.97	1E-04
Zr-95	3.23	1E-03	2.93	1E-03	2.74	1E-03	2.60	1E-03	2.40	1E-03	2.10	1E-03	1.76	1E-03
Zr-97	8.21	1E-04	7.39	1E-04	6.91	1E-04	6.55	1E-04	6.06	1E-04	5.92	1E-04	4.43	1E-04
Nb-93m	8.53	1E-05	3.93	1E-05	2.58	1E-05	1.93	1E-05	1.29	1E-05	7.05	1E-06	3.73	1E-06
Nb-95	3.35	1E-03	3.03	1E-03	2.84	1E-03	2.69	1E-03	2.49	1E-03	2.17	1E-03	1.82	1E-03
Nb-95m	5.15	1E-04	3.26	1E-04	3.07	1E-04	2.76	1E-04	2.40	1E-04	1.97	1E-04	1.58	1E-04
Nb-97	2.97	1E-03	2.68	1E-03	2.51	1E-03	2.39	1E-03	2.21	1E-03	1.92	1E-03	1.61	1E-03
Mo-93	4.00 6.54	1E-04	5.20	1E-04	1.0Z	1E-04	5.26	1E-04	1.30	1E-03	4.10	1E-03	2.19	1E-03
Tc-99m	5.66	1E-04	4 93	1E-04	4 55	1E-04	4 30	1E-04	3.93	1E-04	3 40	1E-04	2.79	1E-04
Ru-103	2.21	1E-03	2.00	1E-03	1.87	1E-03	1.77	1E-03	1.64	1E-03	1.43	1E-03	1.19	1E-03
Ru-105	3.35	1E-03	3.00	1E-03	2.80	1E-03	2.65	1E-03	2.45	1E-03	2.13	1E-03	1.78	1E-03
Rh-103m	4.43	1E-04	2.35	1E-04	1.63	1E-04	1.27	1E-04	8.82	1E-05	5.05	1E-05	2.75	1E-05
Rh-105	3.53	1E-04	3.19	1E-04	2.98	1E-04	2.83	1E-04	2.62	1E-04	2.28	1E-04	1.90	1E-04
Rh-106	9.30	1E-04	8.40	1E-04	7.86	1E-04	7.46	1E-04	6.90	1E-04	6.02	1E-04	5.03	1E-04
Ag-110m	1.18	1E-02	1.06	1E-02	9.96	1E-03	9.46	1E-03	8.76	1E-03	7.64	1E-03	6.41	1E-03
Ag-111 Sn-117m	1.21	1E-04	7.09	1E-04	1.02	1E-04	9.63	1E-05	8.91	1E-05	1.70	1E-05	0.40	1E-05
Sn-126	4.17	1E-04	2.99	1E-04	2.52	1E-04	2.25	1E-04	1.92	1E-04	1.50	1E-04	1.11	1E-04
Sb-124	7.58	1E-03	6.86	1E-03	6.43	1E-03	6.12	1E-03	5.67	1E-03	4.95	1E-03	4.16	1E-03
Sb-125	2.15	1E-03	1.87	1E-03	1.72	1E-03	1.62	1E-03	1.48	1E-03	1.27	1E-03	1.05	1E-03
Sb-126	1.22	1E-02	1.10	1E-02	1.03	1E-02	9.81	1E-03	9.07	1E-03	7.91	1E-03	6.62	1E-03
Sb-127	2.97	1E-03	2.68	1E-03	2.51	1E-03	2.38	1E-03	2.20	1E-03	1.92	1E-03	1.60	1E-03
Sb-128	1.36	1E-02	1.23	1E-02	1.15	1E-02	1.09	1E-02	1.01	1E-02	8.82	1E-03	7.39	1E-03
Sb-129	6.14	1E-03	5.56	1E-03	5.20	1E-03	4.94	1E-03	4.58	1E-03	4.00	1E-03	3.35	1E-03
50-130 Te-123m	1.41 8.36	1E-02	6.74	1E-02	6.01	1E-02 1E-04	5 56	1E-02	1.04	1E-02 1E-04	9.1Z	1E-03	7.04	1E-03 1E-04
Te-125m	6 40	1E-04	3.93	1E-04	2.99	1E-04	2.47	1E-04	1.87	1E-04	1.19	1E-04	7.08	1E-04
Te-127	2.26	1E-05	2.03	1E-05	1.89	1E-05	1.79	1E-05	1.65	1E-05	1.44	1E-05	1.20	1E-05
Te-127m	2.09	1E-04	1.25	1E-04	9.47	1E-05	7.80	1E-05	5.91	1E-05	3.78	1E-05	2.25	1E-05
Te-129	3.45	1E-04	2.77	1E-04	2.48	1E-04	2.30	1E-04	2.07	1E-04	1.75	1E-04	1.42	1E-04
Te-129m	3.71	1E-04	2.63	1E-04	2.20	1E-04	1.95	1E-04	1.65	1E-04	1.28	1E-04	9.62	1E-05
Te-131m	6.08	1E-03	5.50	1E-03	5.14	1E-03	4.88	1E-03	4.51	1E-03	3.93	1E-03	3.30	1E-03
le-132	1.29	1E-03	1.07	1E-03	9.66	1E-04	8.97	1E-04	8.05	1E-04	6.75	1E-04	5.44	1E-04
ie−i33m Te−134	7.84 3.00	1E-03	7.U7 3.40	1E-03	0.00	1E-03	0.2/ 3.00	1E-03	5./9 2 Q /	1E-03	0.05 2.46	1E-03	4.23 2 05	1E-03
I-129	3 43	1E-04	2 24	1E-04	1.75	1E-04	1.48	1E-04	2.04 1.14	1E-04	7 53	1E-05	2.03 4.57	1E-05
I-130	9.48	1E-03	8.58	1E-03	8.03	1E-03	7.63	1E-03	7.05	1E-03	6.15	1E-03	5.15	1E-03
I-131	1.74	1E-03	1.57	1E-03	1.47	1E-03	1.39	1E-03	1.29	1E-03	1.12	1E-03	9.32	1E-04
I-132	9.88	1E-03	8.94	1E-03	8.37	1E-03	7.95	1E-03	7.35	1E-03	6.42	1E-03	5.38	1E-03

付表-3-1(つづき)

			放射性物	物質の土	:壌中に	おける釒	台直分布	īを表す	パラメー	ータ β	(g •	cm^{-2})		
核種	0.	0	0.	1	0.	2	0.	3	0.	5	1.	0	2.	0
I-133	2.72	1E-03	2.46	1E-03	2.30	1E-03	2.18	1E-03	2.01	1E-03	1.76	1E-03	1.47	1E-03
I-134	1.11	1E-02	1.00	1E-02	9.39	1E-03	8.93	1E-03	8.26	1E-03	7.21	1E-03	6.05	1E-03
I-135	6.40	1E-03	5.80	1E-03	5.43	1E-03	5.16	1E-03	4.79	1E-03	4.19	1E-03	3.52	1E-03
Cs-134	6.85	1E-03	6.19	1E-03	5.80	1E-03	5.50	1E-03	5.09	1E-03	4.44	1E-03	3.72	1E-03
Cs-134m	2.86	1E-04	1.80	1E-04	1.46	1E-04	1.29	1E-04	1.08	1E-04	8.20	1E-05	5.98	1E-05
Cs-136	9.08	1E-03	8.22	1E-03	7.69	1E-03	7.30	1E-03	6.75	1E-03	5.90	1E-03	4.94	1E-03
Cs-138	9.30	1E-03	8.43	1E-03	7.90	1E-03	7.51	1E-03	6.96	1E-03	6.10	1E-03	5.13	1E-03
Ba-13/m	2.68	1E-03	2.42	1E-03	2.26	1E-03	2.15	1E-03	1.98	1E-03	1./3	1E-03	1.44	1E-03
Ba-139 Ba-140	2.05	1E-04	1.81	1E-04	1.08	1E-04	1.58	1E-04	1.45	1E-04	1.25	1E-04	1.03	1E-04
Ba-140	9.3Z	1E-04	7.80	1E-04	7.22 7.07	1E-04	0./9	1E-04	0.21	1E-04	0.30	1E-04	4.4Z	1E-04
$L_{a} = 1.41$	1 70	1E_04	1.54	1E-04	1.07	1E_04	1.47	1E_04	1 27	1E_04	1 1 1	1E_04	0.10	1E-05
La-142	8 75	1E-03	7.93	1E-03	7 4 4	1E-03	7.09	1E-03	6.57	1E-03	5 76	1E-03	4 86	1E-03
Ce-141	3.67	1E-04	3.13	1E-04	2.87	1E-04	2.69	1E-04	2.44	1E-04	2.09	1E-04	1.68	1E-04
Ce-143	1.39	1E-03	1.19	1E-03	1.09	1E-03	1.02	1E-03	9.28	1E-04	7.90	1E-04	6.45	1E-04
Ce-144	1.08	1E-04	8.70	1E-05	7.76	1E-05	7.17	1E-05	6.37	1E-05	5.27	1E-05	4.13	1E-05
Pr-145	1.14	1E-04	1.02	1E-04	9.52	1E-05	9.03	1E-05	8.32	1E-05	7.23	1E-05	6.03	1E-05
Nd-147	7.36	1E-04	6.16	1E-04	5.59	1E-04	5.22	1E-04	4.71	1E-04	3.97	1E-04	3.21	1E-04
Pm-148	2.38	1E-03	2.15	1E-03	2.02	1E-03	1.92	1E-03	1.78	1E-03	1.55	1E-03	1.30	1E-03
Pm-148m	8.83	1E-03	7.98	1E-03	7.46	1E-03	7.09	1E-03	6.55	1E-03	5.71	1E-03	4.78	1E-03
Pm-149	1.68	1E-06	1.51	1E-06	1.40	1E-06	1.33	1E-06	1.23	1E-06	1.07	1E-06	8.87	1E-07
Pm-151	1.54	1E-03	1.36	1E-03	1.26	1E-03	1.19	1E-03	1.09	1E-03	9.46	1E-04	7.83	1E-04
Eu-152	4.74	1E-03	4.29	1E-03	4.02	1E-03	3.81	1E-03	3.53	1E-03	3.09	1E-03	2.59	1E-03
Eu-152m	1.33	1E-03	1.18	1E-03	1.09	1E-03	1.03	1E-03	9.47	1E-04	8.20	1E-04	6.81	1E-04
Eu-154	5.24	1E-03	4.71	1E-03	4.40	1E-03	4.17	1E-03	3.85	1E-03	3.36	1E-03	2.81	1E-03
Eu-155	3.16	1E-04	2.54	1E-04	2.27	1E-04	2.10	1E-04	1.88	1E-04	1.55	1E-04	1.20	1E-04
Eu-156	5.36	1E-03	4.84	1E-03	4.53	1E-03	4.30	1E-03	3.98	1E-03	3.48	1E-03	2.92	1E-03
Ht-181	2.50	1E-03	2.21	1E-03	2.05	1E-03	1.94	1E-03	1.79	1E-03	1.55	1E-03	1.29	1E-03
1a-182 W_197	0.01 0.05	1E-03	4.91	1E-03	4.37	1E-03	4.33	1E-03	4.00	1E-03	3.48	1E-03	2.91	1E-03
Dh-210	2.33	1E-03	2.09	1E-05	5.34	1E-05	1.04	1E-05	2.70	1E-05	1.40	1E-05	0.15	1E-03
PD-210 Pb-212	2.07	1E-04	6.04	1E-03	5.54	1E-03	5 19	1E-03	2.71	1E-03	4.07	1E-03	3.13	1E-00
Bi-212	5.01	1E-04	4 25	1E-04	3.91	1E-04	3.68	1E-04	3.38	1E-04	2.93	1E-04	2 4 5	1E-04
Ra-224	4.71	1E-05	4.12	1E-05	3.82	1E-05	3.61	1E-05	3.33	1E-05	2.89	1E-05	2.40	1E-05
Ra-226	3.46	1E-05	2.82	1E-05	2.57	1E-05	2.41	1E-05	2.19	1E-05	1.88	1E-05	1.55	1E-05
Ac-228	4.33	1E-03	3.79	1E-03	3.50	1E-03	3.31	1E-03	3.05	1E-03	2.65	1E-03	2.22	1E-03
Th-228	8.20	1E-05	3.73	1E-05	2.49	1E-05	1.95	1E-05	1.43	1E-05	9.59	1E-06	6.54	1E-06
Th-231	7.85	1E-04	3.63	1E-04	2.41	1E-04	1.85	1E-04	1.31	1E-04	8.11	1E-05	5.02	1E-05
Th-232	6.80	1E-05	2.77	1E-05	1.68	1E-05	1.22	1E-05	7.89	1E-06	4.28	1E-06	2.31	1E-06
Th-234	1.14	1E-04	6.34	1E-05	4.82	1E-05	4.09	1E-05	3.33	1E-05	2.50	1E-05	1.84	1E-05
Pa-233	1.33	1E-03	1.01	1E-03	8.87	1E-04	8.19	1E-04	7.37	1E-04	6.24	1E-04	5.09	1E-04
U-232	8.70	1E-05	3.62	1E-05	2.23	1E-05	1.62	1E-05	1.06	1E-05	5.81	1E-06	3.16	1E-06
U-234	7.98	1E-05	3.30	1E-05	2.02	1E-05	1.46	1E-05	9.47	1E-06	5.08	1E-06	2.69	1E-06
U-235	1.06	1E-03	7.75	1E-04	6.77	1E-04	6.22	1E-04	5.55	1E-04	4.69	1E-04	3.82	1E-04
U-236	6./1	1E-05	2.78	1E-05	1.69	1E-05	1.22	1E-05	/.90	1E-06	4.21	1E-06	2.21	1E-06
U-237	1.09	1E-03	/.36	1E-04	6.1/	1E-04	5.53	1E-04	4.80	1E-04	3.90	1E-04	3.07	1E-04
U=238	1.07	1E-05	2.93	1E-05	1.79	1E-05	1.29	1E-05	8.33	1E-06	4.44	1E-06	2.32	1E-06
Np=237	2 05	1E-04	2.23	1E-04	2.30	1E-04	1.00	1E-04	2.05	1E-04	9.77 178	1E-03	1/0	1E-03
Np 230	1 10	1E-03	2.50	1E-04	7.43	1E-04	6.78	1E-04	6.02	1E-04	5.03	1E-04	4.05	1E-04
Pu-236	8.81	1E-05	3 72	1E-05	2.30	1E-05	1 66	1E-05	1.02	1E-05	5.00	1E-06	3.00	1E-06
Pu-238	8 67	1E-05	3.66	1E-05	2.00	1E-05	1.60	1E-05	1.00	1E-05	5.60	1E-06	2.00	1E-06
Pu-239	3.73	1E-05	1.52	1E-05	9.28	1E-06	6.72	1E-06	4.38	1E-06	2.37	1E-06	1.27	1E-06
Pu-240	7.61	1E-05	3.21	1E-05	1.98	1E-05	1.43	1E-05	9.25	1E-06	4.91	1E-06	2.55	1E-06
Pu-242	7.03	1E-05	2.97	1E-05	1.83	1E-05	1.32	1E-05	8.56	1E-06	4.53	1E-06	2.35	1E-06
Am-241	4.35	1E-04	2.36	1E-04	1.74	1E-04	1.43	1E-04	1.12	1E-04	7.86	1E-05	5.35	1E-05
Am-242	2.77	1E-04	1.45	1E-04	1.05	1E-04	8.65	1E-05	6.76	1E-05	4.87	1E-05	3.50	1E-05
Am-242m	2.47	1E-04	1.07	1E-04	6.75	1E-05	4.94	1E-05	3.25	1E-05	1.77	1E-05	9.44	1E-06
Am-243	3.89	1E-04	2.74	1E-04	2.32	1E-04	2.09	1E-04	1.81	1E-04	1.45	1E-04	1.10	1E-04
Cm-242	7.41	1E-05	3.19	1E-05	1.99	1E-05	1.44	1E-05	9.38	1E-06	4.99	1E-06	2.60	1E-06
Cm-243	9.48	1E-04	6.59	1E-04	5.61	1E-04	5.08	1E-04	4.47	1E-04	3.71	1E-04	2.98	1E-04
Cm-244	6.98	1E-05	3.02	1E-05	1.88	1E-05	1.37	1E-05	8.87	1E-06	4.72	1E-06	2.45	1E-06
Cm-245	7.58	1E-04	4.92	1E-04	4.05	1E-04	3.60	1E-04	3.10	1E-04	2.51	1E-04	1.97	1E-04
Cm-247	1.45	1E-03	1.27	1E-03	1.18	1E-03	1.11	1E-03	1.03	1E-03	8.92	1E-04	7.41	1E-04
付表-3-1(つづき)

_		放射性物質の土	壌中における銘)直分布を表す/	パラメータ β	デメータ β (g・cm ⁻²)			
核種	3.0	5.0	10	20	30	50	100		
Be-7	1.07 1E-0	4 8.77 1E-05	6.28 1E-05	4.11 1E-05	3.07 1E-05	2.05 1E-05	1.12 1E-05		
Na-22	4.50 1E-0	3 3.72 1E-03	2.70 1E-03	1.80 1E-03	1.36 1E-03	9.22 1E-04	5.11 1E-04		
Na-24	7.27 1E-0	3 6.11 1E-03	4.54 1E-03	3.13 1E-03	2.42 1E-03	1.67 1E-03	9.51 1E-04		
K-40	3.01 1E-0	4 2.51 1E-04	1.84 1E-04	1.25 1E-04	9.59 1E-05	6.55 1E-05	3.68 1E-05		
K-42	5.5/ IE-0	4 4.64 IE-04	3.42 IE-04	2.32 IE-04	1.78 IE-04	1.22 IE-04	6.85 IE-05		
SC-40 Cr-51	4.08 IE-0	3 3.38 IE-03 5 555 1E-05	2.40 IE-03	1.05 IE-03 2.54 1E-05	1.25 IE-03	8.31 IE-04	4.72 IE-04 6.77 IE-06		
Mn-54	1.73 1E-0	3 143 1E-03	1.04 1E-03	6.91 1E-04	5.23 1E-04	3.54 1E-04	1.96 1E-04		
Mn-56	3.29 1E-0	3 2.73 1E-03	2.00 1E-03	1.35 1E-03	1.03 1E-03	7.06 1E-04	3.96 1E-04		
Fe-59	2.36 1E-0	3 1.96 1E-03	1.43 1E-03	9.65 1E-04	7.36 1E-04	5.01 1E-04	2.80 1E-04		
Co-56	6.43 1E-0	3 5.36 1E-03	3.95 1E-03	2.68 1E-03	2.05 1E-03	1.41 1E-03	7.90 1E-04		
Co-57	2.27 1E-0	4 1.80 1E-04	1.22 1E-04	7.47 1E-05	5.40 1E-05	3.49 1E-05	1.85 1E-05		
Co-58	2.04 1E-0	3 1.69 1E-03	1.22 1E-03	8.08 1E-04	6.10 1E-04	4.12 1E-04	2.27 1E-04		
Co-60	4.93 1E-0	3 4.10 1E-03	3.00 1E-03	2.03 1E-03	1.55 1E-03	1.05 1E-03	5.90 1E-04		
Ni-65	1.07 1E-0	3 8.91 1E-04	6.54 1E-04	4.42 1E-04	3.38 1E-04	2.30 1E-04	1.29 1E-04		
Zn-65	1.1/ IE-0	3 9./0 IE-04	7.07 IE-04	4./5 IE-04	3.62 IE-04	2.46 IE-04	1.37 IE-04		
2n-09m Se-75	9.01 1E-0 8.03 1E-0	4 7.36 IE-04 4 650 IE-04	5.26 TE-04	3.45 TE-04	2.37 TE=04 2.13 TE=04	1./1 IE-04 1.40 IE-04	9.37 TE-05		
Br-84	3.22 1E-0	3 2 69 1E-03	1.99 1E-03	1.36 1E-03	1.05 1E-03	7.23 1E-04	4.09 1E-04		
Rb-86	1.90 1E-0	4 1.58 1E-04	1.15 1E-04	7.74 1E-05	5.89 1E-05	4.00 1E-05	2.23 1E-05		
Sr-92	2.61 1E-0	3 2.17 1E-03	1.59 1E-03	1.08 1E-03	8.24 1E-04	5.62 1E-04	3.15 1E-04		
Y-90m	1.34 1E-0	3 1.10 1E-03	7.79 1E-04	5.05 1E-04	3.76 1E-04	2.49 1E-04	1.36 1E-04		
Y-91	7.16 1E-0	6 5.94 1E-06	4.35 1E-06	2.93 1E-06	2.24 1E-06	1.52 1E-06	8.51 1E-07		
Y-91m	1.13 1E-0	3 9.33 1E-04	6.70 1E-04	4.40 1E-04	3.29 1E-04	2.21 1E-04	1.21 1E-04		
Y-92	5.11 1E-0	4 4.24 1E-04	3.09 1E-04	2.07 1E-04	1.57 1E-04	1.07 1E-04	5.92 1E-05		
Y-93	1.74 1E-0	4 1.44 1E-04	1.05 1E-04	7.06 1E-05	5.36 1E-05	3.65 1E-05	2.03 1E-05		
Zr-95	1.55 1E-0	3 1.28 1E-03	9.25 1E-04	6.11 1E-04	4.61 1E-04	3.11 1E-04	1./2 1E-04		
2r-97	3.91 IE-0	4 3.23 IE-04	2.35 IE-04	1.57 IE-04	1.19 IE-04	8.04 IE-05	4.40 IE-05		
Nb-95	2.33 TE-0	3 1.32 1E-03	9.59 1E-07	6.35 1E-07	2.03 1E-07 4.79 1E-04	3.24 1E-07	7.90 TE-08		
Nb-95m	1.36 1E-0	4 1.09 1E-04	7.59 1E-05	4.80 1E-05	3.53 1E-05	2.32 1E-05	1.25 1E-05		
Nb-97	1.42 1E-0	3 1.17 1E-03	8.44 1E-04	5.54 1E-04	4.17 1E-04	2.81 1E-04	1.55 1E-04		
Mo-93	1.49 1E-0	5 9.09 1E-06	4.60 1E-06	2.32 1E-06	1.55 1E-06	9.29 1E-07	4.65 1E-07		
Mo-99	3.11 1E-0	4 2.56 1E-04	1.84 1E-04	1.21 1E-04	9.10 1E-05	6.12 1E-05	3.37 1E-03		
Tc−99m	2.41 1E-0	4 1.93 1E-04	1.32 1E-04	8.18 1E-05	5.94 1E-05	3.85 1E-05	2.05 1E-05		
Ru-103	1.05 1E-0	3 8.59 1E-04	6.16 1E-04	4.04 1E-04	3.02 1E-04	2.02 1E-04	1.10 1E-04		
Ru-105	1.56 1E-0	3 1.29 1E-03	9.28 1E-04	6.10 1E-04	4.58 1E-04	3.08 1E-04	1.70 1E-04		
Rh-103m	1.89 IE-0	5 1.16 IE-05	5.93 IE-06	3.01 IE-06	2.00 IE-06	1.21 IE-06	6.04 IE-07		
Rn-105 Ph-106	1.0/ IE-0	4 1.30 IE-04 4 2.65 1E-04	9.71 IE-05 2.63 1E-04	0.24 IE-05	4.02 IE-03	3.00 IE-05	1.00 IE-05		
Ag-110m	5.65 1E-0	3 468 1F-03	3 40 1E-03	2.26 1E-03	1.71 1E-03	1.16 1E-03	6.43 1E-04		
Ag-111	5.67 1E-0	5 4.63 1E-05	3.30 1E-05	2.12 1E-05	1.57 1E-05	1.04 1E-05	5.68 1E-06		
Sn-117m	3.04 1E-0	4 2.41 1E-04	1.63 1E-04	1.01 1E-04	7.32 1E-05	4.75 1E-05	2.53 1E-05		
Sn-126	9.12 1E-0	5 6.81 1E-05	4.28 1E-05	2.49 1E-05	1.76 1E-05	1.11 1E-05	5.79 1E-06		
Sb-124	3.68 1E-0	3 3.05 1E-03	2.23 1E-03	1.50 1E-03	1.14 1E-03	7.76 1E-04	4.33 1E-04		
Sb-125	9.19 1E-0	4 7.52 1E-04	5.37 1E-04	3.50 1E-04	2.61 1E-04	1.75 1E-04	9.58 1E-05		
Sb-126	5.82 1E-0	3 4.81 1E-03	3.47 1E-03	2.28 1E-03	1.72 1E-03	1.16 1E-03	6.37 1E-04		
Sb-127	1.41 1E-0	3 1.16 1E-03	8.35 1E-04	5.49 1E-04	4.12 1E-04	2.// 1E-04	1.52 1E-04		
SD-128 Sh-120	0.00 IE-0	3 5.37 IE-03 3 2.45 1E-03	3.87 IE-03	2.50 IE-03	1.92 IE-03	1.30 IE-03 6.14 IE-04	7.15 IE-04 3.41 IE-04		
Sb-130	6.73 1E-0	3 5.56 1E-03	4.02 1E-03	2.67 1E-03	2.01 1E-03	1.36 1E-03	7.51 1E-04		
Te-123m	2.84 1E-0	4 2.25 1E-04	1.53 1E-04	9.51 1E-05	6.91 1E-05	4.49 1E-05	2.39 1E-05		
Te-125m	5.07 1E-0	5 3.24 1E-05	1.71 1E-05	8.83 1E-06	5.93 1E-06	3.60 1E-06	1.81 1E-06		
Te-127	1.05 1E-0	5 8.58 1E-06	6.12 1E-06	3.97 1E-06	2.96 1E-06	1.97 1E-06	1.07 1E-06		
Te-127m	1.61 1E-0	5 1.03 1E-05	5.48 1E-06	2.85 1E-06	1.92 1E-06	1.17 1E-06	5.91 1E-07		
Te-129	1.23 1E-0	4 1.00 1E-04	7.12 1E-05	4.64 1E-05	3.46 1E-05	2.31 1E-05	1.27 1E-05		
Te-129m	8.03 1E-0	5 6.29 1E-05	4.31 1E-05	2.76 1E-05	2.05 1E-05	1.37 1E-05	7.48 1E-06		
l'e-131m	2.90 1E-0	3 2.40 1E-03	1.74 1E-03	1.16 1E-03	8.75 1E-04	5.92 1E-04	3.28 1E-04		
1e-132 To-122	4.0/ 1E-0	4 3./5 IE-04	2.59 IE-04	1.03 IE-04	1.20 IE-04	1.83 IE-05	4.22 IE-05		
Te-134	3./3 IE-U 180 1⊑-0	3 3.08 IE-03	2.24 IE-U3	1.49 IE-03	1.13 IE-03 516 1E-04	7.07 1E-04 345 1E-04	4.20 IE-04		
I-129	3 31 1F-0	5 214 1F-05	114 1F-05	5.91 1E-06	3.97 1F-06	241 1F-06	1.00 TE 04		
I-130	4.53 1E-0	3 3.74 1E-03	2.69 1E-03	1.77 1E-03	1.33 1E-03	8.98 1E-04	4.95 1E-04		
I-131	8.18 1E-0	4 6.70 1E-04	4.79 1E-04	3.10 1E-04	2.31 1E-04	1.54 1E-04	8.38 1E-05		
I–132	4.73 1E-0	3 3.92 1E-03	2.84 1E-03	1.88 1E-03	1.42 1E-03	9.60 1E-04	5.31 1E-04		

付表-3-1(つづき)

			放射性物	物質の土	壊中に	おける釒	台直分布	iを表す	パラメー	ペラメータ β (g・cm ⁻²)				
	3.	0	5.	0	10)	20)	30	0	5	0	10	0
I-133	1.29	1E-03	1.06	1E-03	7.66	1E-04	5.04	1E-04	3.79	1E-04	2.54	1E-04	1.40	1E-04
I-134	5.33	1E-03	4.41	1E-03	3.21	1E-03	2.14	1E-03	1.62	1E-03	1.10	1E-03	6.10	1E-04
I-135	3.11	1E-03	2.59	1E-03	1.90	1E-03	1.28	1E-03	9.78	1E-04	6.67	1E-04	3.74	1E-04
Cs-134	3.27	1E-03	2.70	1E-03	1.95	1E-03	1.29	1E-03	9.71	1E-04	6.55	1E-04	3.61	1E-04
Cs-134m	4.87	1E-05	3.65	1E-05	2.34	1E-05	1.39	1E-05	9.92	1E-06	6.35	1E-06	3.33	1E-06
Cs-136	4.35	1E-03	3.60	1E-03	2.61	1E-03	1.74	1E-03	1.32	1E-03	8.90	1E-04	4.93	1E-04
Cs-138	4.54	1E-03	3.78	1E-03	2.77	1E-03	1.88	1E-03	1.44	1E-03	9.81	1E-04	5.51	1E-04
Ba-137m	1.27	1E-03	1.05	1E-03	7.55	1E-04	4.96	1E-04	3.73	1E-04	2.51	1E-04	1.38	1E-04
Ba-139	8.93	1E-05	7.21	1E-05	4.99	1E-05	3.14	1E-05	2.31	1E-05	1.51	1E-05	8.13	1E-06
Ba-140	3.87	1E-04	3.16	1E-04	2.25	1E-04	1.4/	1E-04	1.10	1E-04	/.31	1E-05	4.00	1E-05
La-140	4.51	1E-03	3.75	1E-03	2.75	1E-03	1.85	1E-03	1.41	1E-03	9.64	1E-04	5.40	1E-04
La-141	0.20	1E-03	0.90	1E-00	2.07	1E-00	3.44 1.00	1E-00	2.03	1E-03	0.67	1E-03	5.47	1E-03
La = 142	4.31	1E-03	1 15	1E-03	2.07	1E-05	1.02	1E-03	3 50	1E-05	9.07 2.27	1E-04	1 21	1E-04
Ce-143	5 59	1E-04	4 53	1E-04	3.20	1E-04	2.05	1E-04	1 5 3	1E-04	1 02	1E-04	5.53	1E-05
Ce-144	3 49	1E-05	2.00	1E-05	1.80	1E-05	1 10	1E-05	7.89	1E-06	5.08	1E-06	2 69	1E-06
Pr-145	5 30	1E-05	4 37	1E-05	3 16	1E-05	2.10	1E-05	1 59	1E-05	1 07	1E-05	5.93	1E-06
Nd-147	2.76	1E-04	2.21	1E-04	1.54	1E-04	9.81	1E-05	7.25	1E-05	4.80	1E-05	2.61	1E-05
Pm-148	1.15	1E-03	9.54	1E-04	6.96	1E-04	4.67	1E-04	3.55	1E-04	2.41	1E-04	1.34	1E-04
Pm-148m	4.20	1E-03	3.47	1E-03	2.50	1E-03	1.64	1E-03	1.23	1E-03	8.30	1E-04	4.57	1E-04
Pm-149	7.77	1E-07	6.35	1E-07	4.52	1E-07	2.91	1E-07	2.16	1E-07	1.44	1E-07	7.82	1E-08
Pm-151	6.83	1E-04	5.56	1E-04	3.94	1E-04	2.54	1E-04	1.89	1E-04	1.26	1E-04	6.86	1E-05
Eu-152	2.28	1E-03	1.89	1E-03	1.37	1E-03	9.14	1E-04	6.93	1E-04	4.69	1E-04	2.60	1E-04
Eu-152m	5.97	1E-04	4.91	1E-04	3.54	1E-04	2.34	1E-04	1.77	1E-04	1.20	1E-04	6.61	1E-05
Eu-154	2.47	1E-03	2.04	1E-03	1.48	1E-03	9.87	1E-04	7.48	1E-04	5.07	1E-04	2.81	1E-04
Eu-155	1.01	1E-04	7.68	1E-05	4.93	1E-05	2.92	1E-05	2.07	1E-05	1.32	1E-05	6.88	1E-06
Eu-156	2.59	1E-03	2.15	1E-03	1.58	1E-03	1.07	1E-03	8.14	1E-04	5.57	1E-04	3.12	1E-04
Hf-181	1.13	1E-03	9.19	1E-04	6.52	1E-04	4.23	1E-04	3.14	1E-04	2.09	1E-04	1.14	1E-04
Ta-182	2.56	1E-03	2.11	1E-03	1.53	1E-03	1.03	1E-03	7.79	1E-04	5.28	1E-04	2.94	1E-04
W-187	1.08	1E-03	8.84	1E-04	6.33	1E-04	4.14	1E-04	3.10	1E-04	2.08	1E-04	1.14	1E-04
Pb-210	0.55	1E-06	4.25	1E-06	2.28	1E-06	1.19	1E-06	8.08	1E-07	4.91	1E-07	2.48	1E-07
Bi-212	2.09	1E-04	2.33	1E-04	1.01	1E-04	8.64	1E-04	6 5 5	1E-05	4.00	1E-05	2.03	1E-05
Ba-224	2.10	1E-05	1.70	1E-05	1.30	1E-05	7 60	1E-06	5.61	1E-06	3 60	1E-06	1 99	1E-06
Ra-224	1.34	1E-05	1.70	1E-05	7.50	1E-06	4 70	1E-06	3 44	1E-06	2 2 5	1E-06	1.00	1E-06
Ac-228	1.95	1E-03	1.62	1E-03	1.17	1E-03	7.81	1E-04	5.92	1E-04	4 01	1E-04	2.22	1E-04
Th-228	5.20	1E-06	3.84	1E-06	2.43	1E-06	1.44	1E-06	1.03	1E-06	6.57	1E-07	3.46	1E-07
Th-231	3.77	1E-05	2.60	1E-05	1.52	1E-05	8.50	1E-06	5.92	1E-06	3.70	1E-06	1.91	1E-06
Th-232	1.60	1E-06	1.01	1E-06	5.36	1E-07	2.80	1E-07	1.90	1E-07	1.16	1E-07	5.87	1E-08
Th-234	1.50	1E-05	1.12	1E-05	7.05	1E-06	4.12	1E-06	2.91	1E-06	1.84	1E-06	9.59	1E-07
Pa-233	4.43	1E-04	3.57	1E-04	2.51	1E-04	1.60	1E-04	1.18	1E-04	7.76	1E-05	4.20	1E-05
U-232	2.20	1E-06	1.40	1E-06	7.51	1E-07	3.95	1E-07	2.70	1E-07	1.65	1E-07	8.42	1E-08
U-234	1.85	1E-06	1.15	1E-06	5.95	1E-07	3.05	1E-07	2.06	1E-07	1.25	1E-07	6.30	1E-08
U-235	3.30	1E-04	2.65	1E-04	1.82	1E-04	1.14	1E-04	8.35	1E-05	5.44	1E-05	2.91	1E-05
U-236	1.50	1E-06	9.26	1E-07	4.76	1E-07	2.42	1E-07	1.63	1E-07	9.82	1E-08	4.95	1E-08
U-237	2.59	1E-04	2.03	1E-04	1.35	1E-04	8.28	1E-05	5.98	1E-05	3.87	1E-05	2.05	1E-05
U-238	1.58	1E-06	9.74	1E-07	5.00	1E-07	2.55	1E-07	1.71	1E-07	1.03	1E-07	5.20	1E-08
Np-237	5.29	1E-05	3.86	1E-05	2.39	1E-05	1.39	1E-05	9.79	1E-06	6.20	1E-06	3.24	1E-06
Np-238	1.31	1E-03	1.08	1E-03	1.88	1E-04	5.28	1E-04	4.01	1E-04	2.72	1E-04	1.51	1E-04
Np-239	3.48	1E-04	2./8 1.05	1E-04	1.90	1E-04	1.18	1E-04	8.0Z	1E-03	1.02	1E-03	3.01	1E-00
Pu=230	2.04	1E-00	1.20	1E-00	0.30	1E-07	3.23	1E-07	2.17	1E-07	1.01	1E-07	6.14	1E-00
Pu 230	8.80	1E-07	5.56	1E-07	2.05	1E-07	1 55	1E-07	1.04	1E-07	6.53	1E-08	2 2 2	1E-08
Pu-240	1 72	1E-06	1.05	1E-06	5.32	1E-07	2.68	1E-07	1.00	1E-07	1.08	1E-07	5.33	1E-08
Pu-242	1.59	1E-06	9.67	1E-07	4 88	1E-07	2 45	1E-07	1.64	1E-07	9.85	1E-08	494	1E-08
Am-241	4.17	1E-05	2.95	1E-05	1.73	1E-05	9.59	1E-06	6.64	1E-06	4.12	1E-06	2.11	1E-06
Am-242	2.85	1E-05	2.15	1E-05	1.38	1E-05	8.16	1E-06	5.80	1E-06	3.70	1E-06	1.94	1E-06
Am-242m	6.51	1E-06	4.07	1E-06	2.13	1E-06	1.10	1E-06	7.45	1E-07	4.53	1E-07	2.29	1E-07
Am-243	9.05	1E-05	6.78	1E-05	4.23	1E-05	2.45	1E-05	1.73	1E-05	1.09	1E-05	5.64	1E-06
Cm-242	1.76	1E-06	1.07	1E-06	5.41	1E-07	2.72	1E-07	1.82	1E-07	1.10	1E-07	5.51	1E-08
Cm-243	2.56	1E-04	2.04	1E-04	1.40	1E-04	8.73	1E-05	6.37	1E-05	4.16	1E-05	2.23	1E-05
Cm-244	1.66	1E-06	1.01	1E-06	5.09	1E-07	2.56	1E-07	1.71	1E-07	1.03	1E-07	5.17	1E-08
Cm-245	1.67	1E-04	1.30	1E-04	8.65	1E-05	5.26	1E-05	3.78	1E-05	2.43	1E-05	1.29	1E-05
Cm-247	6.51	1E-04	5.32	1E-04	3.80	1E-04	2.46	1E-04	1.83	1E-04	1.22	1E-04	6.65	1E-05

付表-3-2 放射性核種濃度と地上高1mでの線量率との関係 (土壌中指数分布の場合)

単位: (µSv/h) / (kBq/m²)

			放射性物	勿質の土	:壌中に	おける釒	台直分布	iを表す	パラメー	ータ β	(g •	cm ⁻²)		
核種	0.	0	0.	1	0.	2	0.	3	0.	5	1.	0	2.	0
Be-7	2.93	1E-04	2.65	1E-04	2.49	1E-04	2.37	1E-04	2.20	1E-04	1.93	1E-04	1.62	1E-04
Na-22	1.15	1E-02	1.03	1E-02	9.70	1E-03	9.23	1E-03	8.56	1E-03	7.51	1E-03	6.32	1E-03
Na-24	1.72	1E-02	1.55	1E-02	1.45	1E-02	1.38	1E-02	1.28	1E-02	1.13	1E-02	9.58	1E-03
K-40	7.28	1E-04	6.58	1E-04	6.16	1E-04	5.85	1E-04	5.43	1E-04	4.77	1E-04	4.04	1E-04
K-42	1.29	1E-03	1.16	1E-03	1.09	1E-03	1.03	1E-03	9.59	1E-04	8.43	1E-04	7.14	1E-04
Sc-46	1.02	1E-02	9.17	1E-03	8.60	1E-03	8.22	1E-03	7.64	1E-03	6.68	1E-03	5.62	1E-03
Cr-51	1.94	1E-04	1.75	1E-04	1.65	1E-04	1.57	1E-04	1.46	1E-04	1.28	1E-04	1.08	1E-04
Mn-54	4.41	1E-03	3.97	1E-03	3.72	1E-03	3.55	1E-03	3.29	1E-03	2.88	1E-03	2.42	1E-03
Mn-56	8.06	1E-03	7.27	1E-03	6.81	1E-03	6.51	1E-03	6.03	1E-03	5.28	1E-03	4.45	1E-03
Fe-59	5.83	1E-03	5.25	1E-03	4.92	1E-03	4.70	1E-03	4.37	1E-03	3.83	1E-03	3.22	1E-03
Co-56	1.67	1E-02	1.51	1E-02	1.41	1E-02	1.35	1E-02	1.25	1E-02	1.10	1E-02	9.24	1E-03
Co-5/	7.93	1E-04	/.10	1E-04	6.63	1E-04	6.31	1E-04	5.81	1E-04	5.06	1E-04	4.20	1E-04
Co-58	5.24	1E-03	4./1	1E-03	4.42	1E-03	4.22	1E-03	3.91	1E-03	3.42	1E-03	2.88	1E-03
Co-60	1.21	1E-02	1.09	1E-02	1.02	1E-02	9.75	1E-03	9.00	1E-03	1.90	1E-03	0.70	1E-03
7n-65	2.07	1E-03	2.41	1E-03	2.20	1E-03	2.10	1E-03	2.00	1E-03	1.75	1E-03	1.40	1E-03
Zn 03 Zn-69m	2.00	1E-03	2.00	1E-03	2.44	1E-03	1 99	1E-03	1.84	1E-03	1.50	1E-03	1.35	1E-03
Se-75	2.40	1E-03	2.22	1E-03	2.03	1E-03	1.94	1E-03	1.04	1E-03	1.57	1E-03	1.30	1E-03
Rb-84	7.63	1E-03	6.89	1E-03	6 4 6	1E-03	6 1 6	1E-03	5.72	1E-03	5.03	1E-03	4 25	1E-03
Rb-86	4.65	1E-04	4.19	1E-04	3.93	1E-04	3.76	1E-04	3.50	1E-04	3.06	1E-04	2.57	1E-04
Rb-88	2.84	1E-03	2.56	1E-03	2.40	1E-03	2.29	1E-03	2.13	1E-03	1.86	1E-03	1.57	1E-03
Rb-89	9.63	1E-03	8.68	1E-03	8.14	1E-03	7.77	1E-03	7.22	1E-03	6.33	1E-03	5.33	1E-03
Sr-85	2.90	1E-03	2.58	1E-03	2.42	1E-03	2.30	1E-03	2.13	1E-03	1.86	1E-03	1.57	1E-03
Sr-89	4.50	1E-07	4.05	1E-07	3.79	1E-07	3.63	1E-07	3.37	1E-07	2.95	1E-07	2.48	1E-07
Sr-91	3.67	1E-03	3.30	1E-03	3.10	1E-03	2.96	1E-03	2.74	1E-03	2.40	1E-03	2.02	1E-03
Sr-92	6.37	1E-03	5.75	1E-03	5.39	1E-03	5.12	1E-03	4.75	1E-03	4.18	1E-03	3.53	1E-03
Y-88	1.25	1E-02	1.12	1E-02	1.05	1E-02	1.00	1E-02	9.30	1E-03	8.14	1E-03	6.87	1E-03
Y-90m	3.81	1E-03	3.43	1E-03	3.23	1E-03	3.07	1E-03	2.85	1E-03	2.50	1E-03	2.10	1E-03
Y-90	2.15	1E-08	8.38	1E-09	5.50	1E-09	4.10	1E-09	2.76	1E-09	1.53	1E-09	8.29	1E-10
Y-91m	3.02	1E-05	2.72	1E-05	2.55	1E-03	2.43	1E-03	2.24	1E-05	1.9/	1E-05	1.00	1E-06
Y-02	1.70	1E-03	1.09	1E-03	1.49	1E-03	1.42	1E-03	0.56	1E-03	1.10 8.37	1E-03	9.75	1E-00
Y-93	4 78	1E-04	4.32	1E-04	4.05	1E-04	3.86	1E-04	3.58	1E-04	3 14	1E-04	2.65	1E-04
Zr-89	6.24	1E-03	5 56	1E-03	5.21	1E-03	4 97	1E-03	4 61	1E-03	4 03	1E-03	3 38	1E-03
Zr-95	3.96	1E-03	3.56	1E-03	3.34	1E-03	3.19	1E-03	2.95	1E-03	2.59	1E-03	2.18	1E-03
Zr-97	4.72	1E-03	4.24	1E-03	3.98	1E-03	3.79	1E-03	3.51	1E-03	3.08	1E-03	2.59	1E-03
Nb-93m	3.87	1E-05	1.58	1E-05	1.05	1E-05	7.86	1E-06	5.27	1E-06	2.91	1E-06	1.53	1E-06
Nb-94	8.32	1E-03	7.49	1E-03	7.02	1E-03	6.70	1E-03	6.21	1E-03	5.44	1E-03	4.57	1E-03
Nb-95m	5.37	1E-04	4.18	1E-04	3.76	1E-04	3.50	1E-04	3.18	1E-04	2.74	1E-04	2.26	1E-04
Nb-95	4.11	1E-03	3.70	1E-03	3.47	1E-03	3.31	1E-03	3.06	1E-03	2.69	1E-03	2.26	1E-03
Nb-97m	3.95	1E-03	3.54	1E-03	3.33	1E-03	3.17	1E-03	2.93	1E-03	2.57	1E-03	2.16	1E-03
Nb-97	3.68	1E-03	3.31	1E-03	3.11	1E-03	2.95	1E-03	2.73	1E-03	2.40	1E-03	2.02	1E-03
Mo-93	2.10	1E-04	8.58	1E-05	5.69	1E-05	4.27	1E-05	2.86	1E-05	1.58	1E-05	8.28	1E-06
Mo-99	8.35	1E-04	/.44	1E-04	6.97	1E-04	6.63	1E-04	6.13	1E-04	5.36	1E-04	4.50	1E-04
Mo-101	1.57	1E-04	0.82	1E-04	6.40	1E-03	6.1U	1E-03	5.65	1E-04	4.95	1E-03	4.17	1E-04
Tc-99m	0.34 2.04	1E-04	1.42	1E-04	0.93	1E-04	1.65	1E-04	1.52	1E-04	1.31	1E-04	4.43	1E-04
Ru-103	2.04	1E-03	2.60	1E-03	2 4 4	1E-03	2 3 2	1E-03	2 15	1E-03	1.04	1E-03	1.13	1E-03
Ru-105	4 21	1E-03	3 77	1E-03	3.53	1E-03	3.36	1E-03	311	1E-03	2 7 2	1E-03	2 2 9	1E-03
Rh-103m	3.22	1E-05	1.59	1E-05	1.13	1E-05	8.86	1E-06	6.23	1E-06	3.63	1E-06	1.98	1E-06
Rh-105	4.73	1E-04	4.28	1E-04	4.03	1E-04	3.84	1E-04	3.55	1E-04	3.12	1E-04	2.63	1E-04
Rh-106	1.15	1E-03	1.04	1E-03	9.73	1E-04	9.26	1E-04	8.56	1E-04	7.51	1E-04	6.32	1E-04
Ag-108m	9.32	1E-03	8.28	1E-03	7.75	1E-03	7.36	1E-03	6.78	1E-03	5.94	1E-03	4.98	1E-03
Ag-110m	1.42	1E-02	1.28	1E-02	1.20	1E-02	1.14	1E-02	1.06	1E-02	9.27	1E-03	7.80	1E-03
Ag-110	1.70	1E-04	1.53	1E-04	1.43	1E-04	1.36	1E-04	1.26	1E-04	1.10	1E-04	9.28	1E-05
Ag-111	1.62	1E-04	1.46	1E-04	1.38	1E-04	1.31	1E-04	1.21	1E-04	1.06	1E-04	8.96	1E-05
Cd-109	4.65	1E-04	2.56	1E-04	1.91	1E-04	1.55	1E-04	1.15	1E-04	7.22	1E-05	4.32	1E-05
Sn-117m	1.21	1E-03	9.99	1E-04	9.05	1E-04	8.45	1E-04	7.62	1E-04	6.46	1E-04	5.25	1E-04
Sn-126	4.94	1E-04	3.89	1E-04	3.45	1E-04	3.16	1E-04	2.77	1E-04	2.25	1E-04	1.71	1E-04
Sb-124	9.17	1E-03	8.27	1E-03	7.75	1E-03	7.37	1E-03	6.83	1E-03	5.99	1E-03	5.06	1E-03
Sb-125	2.67	1E-03	2.34	1E-03	2.18	1E-03	2.06	1E-03	1.89	1E-03	1.64	1E-03	1.37	1E-03
Sb-126m	8.68	1E-03	/.81	1E-03	1.34	1E-03	6.98	1E-03	6.45	1E-03	5.66	1E-03	4.77	1E-03
SD-120	1.53	15-02	1.38 2 FO	15-02	1.3U 2.20	15-02	1.23	1E-02	1.14	1E-02	1.00	1E-02	8.43 010	1E-03
Sh-122	3.90 1.60	1E-03	3.3U 152	1E-03	3.29 1 / 2	1E-03	১. I ও 1 २६	1E-03	2.09 1.26	1E-03	2.04	1E-03	2.13 0.21	1E-03
		. 2 02		02				. 2 02	1.20				0.01	00

	;	放射性物質の土	懐中における鉛	i直分布を表す/	パラメータ β	(g • cm ⁻²)	
	0.0	0.1	0.2	0.3	0.5	1.0	2.0
Sb-129	7.46 1E-03	6.72 1E-03	6.30 1E-03	6.01 1E-03	5.57 1E-03	4.88 1E-03	4.11 1E-03
Sb-130	1.75 1E-02	1.57 1E-02	1.48 1E-02	1.41 1E-02	1.31 1E-02	1.14 1E-02	9.62 1E-03
Sb-131	1.02 1E-02	9.21 1E-03	8.63 1E-03	8.24 1E-03	7.64 1E-03	6.70 1E-03	5.64 1E-03
Te-123m	1.10 1E-03	9.29 1E-04	8.47 1E-04	7.95 1E-04	7.20 1E-04	6.13 1E-04	5.00 1E-04
Te-125m	5.84 1E-04	3.69 1E-04	2.91 1E-04	2.43 1E-04	1.86 1E-04	1.19 1E-04	7.02 1E-05
Te-127m	1.84 1E-04	1.16 1E-04	9.14 1E-05	7.64 1E-05	5.85 1E-05	3.76 1E-05	2.23 1E-05
Te-127	2.95 1E-05	2.65 1E-05	2.49 1E-05	2.37 1E-05	2.19 1E-05	1.92 1E-05	1.61 1E-05
Te-129m	2.95 1E-04	2.29 1E-04	2.02 1E-04	1.84 1E-04	1.62 1E-04	1.32 1E-04	1.04 1E-04
Te-129	4.08 1E-04	3.47 1E-04	3.19 1E-04	2.99 1E-04	2.72 1E-04	2.32 1E-04	1.91 1E-04
Te-131m	7.70 1E-03	6.91 1E-03	6.47 1E-03	6.16 1E-03	5.71 1E-03	4.99 1E-03	4.19 1E-03
Te-131	2.42 1E-03	2.17 1E-03	2.03 1E-03	1.93 1E-03	1.79 1E-03	1.56 1E-03	1.31 1E-03
Te-132	1.70 1E-03	1.45 1E-03	1.32 1E-03	1.24 1E-03	1.12 1E-03	9.54 1E-04	7.77 1E-04
Te-133m	9.66 1E-03	8.68 1E-03	8.13 1E-03	7.76 1E-03	7.19 1E-03	6.29 1E-03	5.28 1E-03
Te-133	6.16 1E-03	5.56 1E-03	5.22 1E-03	4.98 1E-03	4.61 1E-03	4.04 1E-03	3.41 1E-03
Te-134	5.07 1E-03	4.53 1E-03	4.24 1E-03	4.03 1E-03	3.72 1E-03	3.25 1E-03	2.72 1E-03
I-128	5.41 1E-04	4.81 1E-04	4.51 1E-04	4.28 1E-04	3.94 1E-04	3.44 1E-04	2.88 1E-04
I-129	3.73 1E-04	2.47 1E-04	1.99 1E-04	1.69 1E-04	1.32 1E-04	8.76 1E-05	5.31 1E-05
I-130	1.18 1E-02	1.07 1E-02	1.00 1E-02	9.52 1E-03	8.81 1E-03	7.73 1E-03	6.50 1E-03
I-131	2.30 1E-03	2.07 1E-03	1.95 1E-03	1.85 1E-03	1.72 1E-03	1.50 1E-03	1.27 1E-03
I-132	1.21 1E-02	1.09 1E-02	1.02 1E-02	9.70 1E-03	8.98 1E-03	7.88 1E-03	6.63 1E-03
I-133	3.44 1E-03	3.10 1E-03	2.91 1E-03	2.77 1E-03	2.56 1E-03	2.25 1E-03	1.89 1E-03
I-134	1.34 1E-02	1.21 1E-02	1.13 1E-02	1.08 1E-02	1.00 1E-02	8.79 1E-03	7.39 1E-03
I-135	7.64 1E-03	6.90 1E-03	6.46 1E-03	6.16 1E-03	5.72 1E-03	5.02 1E-03	4.23 1E-03
Cs-134m	2.56 1E-04	1.95 1E-04	1.70 1E-04	1.53 1E-04	1.32 1E-04	1.04 1E-04	7.82 1E-05
Cs-134	8.50 1E-03	7.64 1E-03	7.17 1E-03	6.83 1E-03	6.32 1E-03	5.54 1E-03	4.66 1E-03
Cs-136	1.12 1E-02	1.00 1E-02	9.42 1E-03	8.99 1E-03	8.35 1E-03	7.30 1E-03	6.13 1E-03
Cs-137	3.15 1E-03	2.83 1E-03	2.65 1E-03	2.52 1E-03	2.32 1E-03	2.04 1E-03	1.71 1E-03
Cs-138	1.11 1E-02	1.00 1E-02	9.40 1E-03	8.95 1E-03	8.30 1E-03	7.29 1E-03	6.16 1E-03
Ba-133	2.81 1E-03	2.40 1E-03	2.21 1E-03	2.07 1E-03	1.88 1E-03	1.60 1E-03	1.31 1E-03
Ba-137m	3.33 1E-03	2.99 1E-03	2.80 1E-03	2.66 1E-03	2.46 1E-03	2.15 1E-03	1.81 1E-03
Ba-139	2.96 1E-04	2.63 1E-04	2.45 1E-04	2.33 1E-04	2.14 1E-04	1.87 1E-04	1.55 1E-04
Ba-140	1.11 1E-03	9.80 1E-04	9.14 1E-04	8.65 1E-04	7.95 1E-04	6.92 1E-04	5.78 1E-04
La-140	1.11 1E-02	1.00 1E-02	9.40 1E-03	8.95 1E-03	8.30 1E-03	7.28 1E-03	6.16 1E-03
La-141	1.26 1E-04	1.13 1E-04	1.06 1E-04	1.01 1E-04	9.38 1E-05	8.24 1E-05	6.96 1E-05
La-142	1.04 IE-02	9.36 IE-03	8.78 IE-03	8.37 IE-03	7.76 IE-03	6.82 IE-03	5./6 IE-03
Ce-141	5.32 IE-04	4.00 IE-04	4.31 IE-04	4.08 IE-04	3./3 IE-04	3.20 IE-04	2.63 IE-04
Ce-143	1.81 IE-03	1.38 IE-03	1.40 IE-03	1.37 IE-03	1.20 IE-03	1.08 IE-03	8.80 IE-04
Ce-144	1.40 IE-04	1.24 IE-04	1.13 IE-04	1.00 IE-04	9.52 TE-05	7.99 IE-03	0.40 IE-03
Pr=143 Pr=144m	4.03 IE-II	4.34 IE-II 1.09 IE-04	4.07 IE-II	3.00 IE-II 7.02 IE-05	5.59 IE-II 6.51 1E-05	3.13 IE-11	2.00 1E-11
Dr-144	1.30 1E 04	1.00 TE 04	1.14 1E-04	1.08 1E-04	1.00 1E-04	4.04 1E 05	7.43 1E-05
Dr-145	1.04 1E 04	8.97 1E-05	8 38 1E-05	7.98 1E-05	7.38 1E-05	6.43 1E-05	7.43 TE 05
Nd-147	9.45 1E-04	8.16 1E-04	7.52 1E-04	7.06 1E-04	6.40 1E-04	5.44 1E-04	4.41 1E-04
Pm-147	3.45 1E 04	2.81 1E-08	2.56 1E-08	2.40 1E-08	0.40 1E 04 2.16 1E-08	1.81 1E-08	1.41 1E 04
Pm-148m	1 11 1E-02	9.96 1E-03	9.35 1E-03	8.90 1E-03	8.23 1E-03	7.22 1E-03	6 07 1E-03
Pm-148	2.87 1E-03	2.59 1E-03	2.43 1E-03	2.31 1E-03	2.14 1E-03	1.88 1E-03	1.59 1E-03
Pm-149	7.17 1E-05	6.46 1E-05	6.07 1E-05	5.77 1E-05	5.35 1E-05	4.69 1E-05	3.94 1E-05
Pm-151	2 01 1E-03	1.80 1E-03	1.68 1E-03	1.59 1E-03	1 47 1E-03	1.28 1E-03	106 1E-03
Sm-151	1.33 1E-07	6.82 1E-08	4.90 1E-08	3.86 1E-08	2.74 1E-08	1.60 1E-08	8.75 1E-09
Eu-152m	1.66 1E-03	1.48 1E-03	1.38 1E-03	1.31 1E-03	1.21 1E-03	1.05 1E-03	8.76 1E-04
Eu-152	6.23 1E-03	5.57 1E-03	5.20 1E-03	4.95 1E-03	4.57 1E-03	3.98 1E-03	3.33 1E-03
Eu-154	5.86 1E-03	5.26 1E-03	4.92 1E-03	4.69 1E-03	4.34 1E-03	3.79 1E-03	3.18 1E-03
Eu-155	4.49 1E-04	3.89 1E-04	3.56 1E-04	3.34 1E-04	3.01 1E-04	2.52 1E-04	1.98 1E-04
Eu-156	5.84 1E-03	5.26 1E-03	4.93 1E-03	4.70 1E-03	4.36 1E-03	3.81 1E-03	3.21 1E-03
Tb-160	5.88 1E-03	5.29 1E-03	4.96 1E-03	4.73 1E-03	4.39 1E-03	3.84 1E-03	3.22 1E-03
Yb-169	2.41 1E-03	2.09 1E-03	1.92 1E-03	1.80 1E-03	1.62 1E-03	1.35 1E-03	1.07 1E-03
Hf-181	3.20 1E-03	2.88 1E-03	2.70 1E-03	2.57 1E-03	2.37 1E-03	2.07 1E-03	1.73 1E-03
Ta-182	6.58 1E-03	5.92 1E-03	5.54 1E-03	5.28 1E-03	4.90 1E-03	4.27 1E-03	3.58 1E-03
W-185	3.63 1E-07	3.19 1E-07	2.94 1E-07	2.77 1E-07	2.50 1E-07	2.10 1E-07	1.66 1E-07
W-187	2.57 1E-03	2.31 1E-03	2.16 1E-03	2.06 1E-03	1.90 1E-03	1.66 1E-03	1.39 1E-03
Ir-192	4.90 1E-03	4.42 1E-03	4.16 1E-03	3.96 1E-03	3.67 1E-03	3.22 1E-03	2.71 1E-03
Hg-203	1.48 1E-03	1.34 1E-03	1.25 1E-03	1.19 1E-03	1.11 1E-03	9.70 1E-04	8.14 1E-04
TI-208	1.45 1E-02	1.31 1E-02	1.23 1E-02	1.17 1E-02	1.09 1E-02	9.57 1E-03	8.08 1E-03
Pb-210	3.55 1E-05	2.09 1E-05	1.71 1E-05	1.49 1E-05	1.23 1E-05	9.01 1E-06	6.09 1E-06
Pb-212	9.18 1E-04	8.25 1E-04	7.71 1E-04	7.33 1E-04	6.77 1E-04	5.90 1E-04	4.89 1E-04
Pb-214	1.54 1E-03	1.39 1E-03	1.31 1E-03	1.24 1E-03	1.15 1E-03	1.00 1E-03	8.42 1E-04

		放射	1性物	物質の土地	襄中に:	おける鉛	直分布	を表す	パラメー	-タ β	(g •	cm ⁻²)		
核種	0.0		0.	1	0.	2	0.	3	0.	5	1.	0	2.	0
Bi-212	5.34 1E	E-04 4	.79	1E-04	4.48	1E-04	4.26	1E-04	3.95	1E-04	3.46	1E-04	2.91	1E-04
Bi-214	7.13 1E	E-03 6	.43	1E-03	6.03	1E-03	5.74	1E-03	5.32	1E-03	4.67	1E-03	3.94	1E-03
Po-216	8.15 1E	E-08 7	.33	1E-08	6.87	1E-08	6.56	1E-08	6.08	1E-08	5.32	1E-08	4.48	1E-08
Ra-224	6.50 1E	E-05 5	.88	1E-05	5.51	1E-05	5.24	1E-05	4.86	1E-05	4.27	1E-05	3.57	1E-05
Ra-226	4.74 1E	E-05 4	.24	1E-05	3.96	1E-05	3.77	1E-05	3.49	1E-05	3.06	1E-05	2.54	1E-05
Ac-228	4.56 1E	E-03 4	.07	1E-03	3.80	1E-03	3.63	1E-03	3.36	1E-03	2.94	1E-03	2.47	1E-03
Th-228	2.99 1E	E-05 1	.82	1E-05	1.52	1E-05	1.36	1E-05	1.17	1E-05	9.50	1E-06	7.43	1E-06
Th-231	3.10 1E	E-04 1	.75	1E-04	1.38	1E-04	1.18	1E-04	9.54	1E-05	7.03	1E-05	5.01	1E-05
Th-232	1.47 1E	E-05 6	.25	1E-06	4.40	1E-06	3.50	1E-06	2.58	1E-06	1.69	1E-06	1.09	1E-06
Th-234	8.80 1E	E-05 6	.53	1E-05	5.76	1E-05	5.29	1E-05	4.68	1E-05	3.84	1E-05	2.98	1E-05
Pa-233	1.45 1E	E-03 1	.25	1E-03	1.16	1E-03	1.09	1E-03	1.01	1E-03	8.73	1E-04	7.28	1E-04
U-232	2.83 1E	E-05 1	.20	1E-05	8.27	1E-06	6.44	1E-06	4.62	1E-06	2.88	1E-06	1.77	1E-06
U-234	2.51 1E	E-05 1	.03	1E-05	6.99	1E-06	5.36	1E-06	3.74	1E-06	2.23	1E-06	1.29	1E-06
U-235	1.09 1E	E-03 9	.58	1E-04	8.90	1E-04	8.45	1E-04	7.81	1E-04	6.82	1E-04	5.67	1E-04
U-236	2.24 1E	E-05 9	.04	1E-06	6.05	1E-06	4.59	1E-06	3.15	1E-06	1.81	1E-06	1.01	1E-06
U-237	1.06 1E	E-03 8	.62	1E-04	7.82	1E-04	7.30	1E-04	6.59	1E-04	5.59	1E-04	4.50	1E-04
U-238	1.81 1E	E-05 7	.28	1E-06	4.87	1E-06	3.70	1E-06	2.54	1E-06	1.47	1E-06	8.20	1E-07
Np-237	3.44 1E	E-04 2	.24	1E-04	1.88	1E-04	1.67	1E-04	1.42	1E-04	1.12	1E-04	8.40	1E-05
Np-238	3.36 1E	E-03 2	.98	1E-03	2.78	1E-03	2.65	1E-03	2.46	1E-03	2.15	1E-03	1.80	1E-03
Np-239	1.27 1E	E-03 1	.06	1E-03	9.78	1E-04	9.20	1E-04	8.40	1E-04	7.26	1E-04	5.98	1E-04
Pu-236	3.19 1E	E-05 1	.33	1E-05	8.96	1E-06	6.81	1E-06	4.65	1E-06	2.65	1E-06	1.44	1E-06
Pu-238	2.92 1E	E-05 1	.21	1E-05	8.13	1E-06	6.16	1E-06	4.18	1E-06	2.35	1E-06	1.26	1E-06
Pu-239	1.29 1E	E-05 5	.54	1E-06	3.81	1E-06	2.95	1E-06	2.08	1E-06	1.25	1E-06	7.39	1E-07
Pu-240	2.76 1E	E-05 1	.15	1E-05	7.69	1E-06	5.83	1E-06	3.97	1E-06	2.24	1E-06	1.21	1E-06
Pu-241	1.33 1E	E-08 1	.03	1E-08	9.25	1E-09	8.60	1E-09	7.74	1E-09	6.56	1E-09	5.29	1E-09
Pu-242	2.33 1E	E-05 9	.90	1E-06	6.75	1E-06	5.19	1E-06	3.63	1E-06	2.15	1E-06	1.25	1E-06
Am-241	3.60 1E	E-04 2	.30	1E-04	1.91	1E-04	1.68	1E-04	1.40	1E-04	1.06	1E-04	7.53	1E-05
Am-242m	8.47 1E	E-05 3	.80	1E-05	2.63	1E-05	2.04	1E-05	1.43	1E-05	8.41	1E-06	4.75	1E-06
Am-242	1.80 1E	E-04 1	.19	1E-04	1.00	1E-04	8.99	1E-05	7.75	1E-05	6.27	1E-05	4.89	1E-05
Am-243	4.59 1E	E-04 3	.75	1E-04	3.39	1E-04	3.16	1E-04	2.83	1E-04	2.33	1E-04	1.80	1E-04
Cm-242	3.10 1E	E-05 1	.34	1E-05	9.07	1E-06	6.92	1E-06	4.73	1E-06	2.68	1E-06	1.44	1E-06
Cm-243	9.33 1E	E-04 7	.76	1E-04	7.11	1E-04	6.67	1E-04	6.09	1E-04	5.26	1E-04	4.33	1E-04
Cm-244	2.67 1E	E-05 1	.15	1E-05	7.84	1E-06	5.99	1E-06	4.11	1E-06	2.35	1E-06	1.28	1E-06
Cm-245	7.92 1E	E-04 6	.37	1E-04	5.78	1E-04	5.40	1E-04	4.88	1E-04	4.17	1E-04	3.39	1E-04
Cm-246	4.09 1E	E-05 2	.69	1E-05	2.28	1E-05	2.06	1E-05	1.80	1E-05	1.47	1E-05	1.18	1E-05
Cm-247	1.88 1E	E-03 1	.70	1E-03	1.60	1E-03	1.52	1E-03	1.41	1E-03	1.24	1E-03	1.04	1E-03
Cm-248	7.09 1E	E-03 6	.37	1E-03	5.97	1E-03	5.71	1E-03	5.30	1E-03	4.64	1E-03	3.90	1E-03

			放射性特	物質の土	壊中に	おける針	自己分布	iを表す	パラメー	ータ β	(g •	cm ⁻²)		
	3.	0	5.	0	10)	20)	30)	50)	10	0
Be-7	1.43	1E-04	1.18	1E-04	8.52	1E-05	5.60	1E-05	4.14	1E-05	2.77	1E-05	1.52	1E-05
Na-22	5.59	1E-03	4.63	1E-03	3.39	1E-03	2.27	1E-03	1.70	1E-03	1.16	1E-03	6.46	1E-04
Na-24	8.51	1E-03	7.16	1E-03	5.36	1E-03	3.70	1E-03	2.85	1E-03	1.98	1E-03	1.13	1E-03
K-40	3.56	1E-04	2.97	1E-04	2.21	1E-04	1.50	1E-04	1.14	1E-04	7.89	1E-05	4.46	1E-05
K-42	6.30	1E-04	5.27	1E-04	3.91	1E-04	2.66	1E-04	2.03	1E-04	1.40	1E-04	7.94	1E-05
Sc-46	4.97	1E-03	4.12	1E-03	3.03	1E-03	2.03	1E-03	1.54	1E-03	1.05	1E-03	5.85	1E-04
Cr-51	9.47	1E-05	7.81	1E-05	5.55	1E-05	3.58	1E-05	2.65	1E-05	1.75	1E-05	9.59	1E-06
Mn-54	2.14	1E-03	1.77	1E-03	1.30	1E-03	8.66	1E-04	6.52	1E-04	4.42	1E-04	2.46	1E-04
Mn-56	3.95	1E-03	3.29	1E-03	2.43	1E-03	1.65	1E-03	1.25	1E-03	8.60	1E-04	4.83	1E-04
Fe-59	2.85	1E-03	2.36	1E-03	1.75	1E-03	1.18	1E-03	8.93	1E-04	6.12	1E-04	3.43	1E-04
Co-56	8.20	1E-03	6.84	1E-03	5.06	1E-03	3.44	1E-03	2.62	1E-03	1.80	1E-03	1.01	1E-03
Co-57	3.59	1E-04	2.89	1E-04	1.94	1E-04	1.19	1E-04	8.62	1E-05	5.55	1E-05	2.93	1E-05
Co-58	2.55	1E-03	2.11	1E-03	1.54	1E-03	1.02	1E-03	7.68	1E-04	5.19	1E-04	2.89	1E-04
Co-60	5.92	1E-03	4.92	1E-03	3.64	1E-03	2.46	1E-03	1.87	1E-03	1.28	1E-03	7.22	1E-04
Ni-65	1.31	1E-03	1.09	1E-03	8.06	1E-04	5.45	1E-04	4.14	1E-04	2.85	1E-04	1.60	1E-04
Zn-65	1.41	1E-03	1.1/	1E-03	8.61	1E-04	5.79	1E-04	4.39	1E-04	3.00	1E-04	1.68	1E-04
2n-09m	1.20	1E-03	9.90	1E-04	7.12	1E-04	4.00	1E-04	3.45	1E-04	2.30	1E-04	1.20	1E-04
	1.10	1E-03	9.42	1E-04	0.09	1E-04	4.19	1E-04	3.08	1E-04	2.02	1E-04	1.09	1E-04
RD-84	3./8 2.27	1E-03	3.17	1E-03	2.30	1E-03	1.02	1E-03	1.24	1E-03	8.37 1 0 2	1E-04	4.80	1E-04
Rb-88	2.27 1.40	1E-04	1.00	1E-04	1.39 Q 71	1E-04	5.02 5.06	1E-00	1.00	1E-03	4.00 3 15	1E-00	2.70 170	1E-03
Rb-89	1.40 1.72	1E-03	3 95	1E-03	0./1 2 Q 2	1E-04	1 90	1F-04	1.57	1E-04	1 04	1E-04	5.87	1E-04
Sr-85	1.38	1E-03	1 1 4	1E-03	8.26	1E-04	5 44	1E-04	4.03	1E-04	2 70	1E-04	1 4 9	1E-04
Sr-89	2 1 9	1E-07	1.14	1E-07	1.33	1E-07	8 89	1E-08	6.72	1E-08	4 56	1E-08	2.54	1E-08
Sr-91	1 79	1E-03	1.01	1E-03	1.00	1E-03	7 25	1E-04	5.47	1E-04	3.71	1E-04	2.04	1E-04
Sr-92	3.12	1E-03	2 60	1E-03	1.00	1E-03	1.30	1E-03	9.89	1E-04	6.81	1E-04	3.84	1E-04
Y-88	6.10	1E-03	5.09	1E-03	3.78	1E-03	2.57	1E-03	1.96	1E-03	1.35	1E-03	7.60	1E-04
Y-90m	1.85	1E-03	1.52	1E-03	1.09	1E-03	7.05	1E-04	5.21	1E-04	3.46	1E-04	1.89	1E-04
Y-90	5.75	1E-10	3.67	1E-10	1.95	1E-10	1.07	1E-10	7.29	1E-11	4.59	1E-11	2.43	1E-11
Y-91m	1.46	1E-03	1.21	1E-03	8.75	1E-04	5.78	1E-04	4.29	1E-04	2.88	1E-04	1.59	1E-04
Y-91	8.62	1E-06	7.16	1E-06	5.29	1E-06	3.57	1E-06	2.71	1E-06	1.86	1E-06	1.04	1E-06
Y-92	6.23	1E-04	5.17	1E-04	3.80	1E-04	2.55	1E-04	1.93	1E-04	1.31	1E-04	7.33	1E-05
Y-93	2.35	1E-04	1.95	1E-04	1.43	1E-04	9.56	1E-05	7.24	1E-05	4.93	1E-05	2.75	1E-05
Zr-89	2.99	1E-03	2.47	1E-03	1.81	1E-03	1.21	1E-03	9.07	1E-04	6.15	1E-04	3.42	1E-04
Zr-95	1.92	1E-03	1.59	1E-03	1.16	1E-03	7.72	1E-04	5.79	1E-04	3.92	1E-04	2.18	1E-04
Zr-97	2.29	1E-03	1.90	1E-03	1.38	1E-03	9.21	1E-04	6.91	1E-04	4.68	1E-04	2.61	1E-04
Nb-93m	1.03	1E-06	6.32	1E-07	3.14	1E-07	1.61	1E-07	1.05	1E-07	6.29	1E-08	3.22	1E-08
Nb-94	4.04	1E-03	3.35	1E-03	2.44	1E-03	1.63	1E-03	1.22	1E-03	8.29	1E-04	4.61	1E-04
Nb-95m	1.98	1E-04	1.61	1E-04	1.13	1E-04	7.18	1E-05	5.30	1E-05	3.47	1E-05	1.87	1E-05
Nb-95	2.00	1E-03	1.65	1E-03	1.21	1E-03	8.03	1E-04	6.03	1E-04	4.08	1E-04	2.27	1E-04
Nb-97m	1.91	1E-03	1.58	1E-03	1.15	1E-03	7.67	1E-04	5.75	1E-04	3.89	1E-04	2.17	1E-04
Nb-97	1.78	1E-03	1.48	1E-03	1.07	1E-03	7.12	1E-04	5.31	1E-04	3.59	1E-04	2.00	1E-04
Mo-93	5.59	1E-06	3.43	1E-06	1./1	1E-06	8.73	1E-0/	5.68	1E-0/	3.41	1E-07	1./5	1E-07
Mo-99	3.97	1E-04	3.27	1E-04	2.37	1E-04	1.00	1E-04	1.17	1E-04	7.85	1E-03	4.35	1E-00
To=00m	3.09	1E-03	3.07	1E-03	2.23	1E-03	1.31	1E-03	0.40	1E-05	7.80 6.00	1E-04	4.37	1E-04
Tc-101	9.00 9.02	1F-04	9.00 8.18	1E-04	5.82	1E-04	3 76	1E-04	9.40 9.78	1E-04	1 84	1E-04	1 01	1E-04
Ru-103	1 40	1E-03	1 16	1E-03	8 34	1E-04	549	1E-04	4.07	1E-04	2 7 2	1E-04	1.01	1E-04
Ru-105	2 02	1E-03	1.10	1E-03	1 2 1	1E-03	7 99	1E-04	5.96	1E-04	4 02	1E-04	2.23	1E-04
Rh-103m	1.37	1E-06	8 4 4	1E-07	4 35	1E-07	2.17	1E-07	1 45	1E-07	8 63	1E-08	4 38	1E-08
Rh-105	2.30	1E-04	1.90	1E-04	1.35	1E-04	8.71	1E-05	6.44	1E-05	4.26	1E-05	2.33	1E-05
Rh-106	5.58	1E-04	4.62	1E-04	3.35	1E-04	2.22	1E-04	1.65	1E-04	1.11	1E-04	6.18	1E-05
Ag-108m	4.40	1E-03	3.63	1E-03	2.63	1E-03	1.74	1E-03	1.29	1E-03	8.71	1E-04	4.83	1E-04
Ag-110m	6.90	1E-03	5.72	1E-03	4.19	1E-03	2.80	1E-03	2.11	1E-03	1.43	1E-03	8.00	1E-04
Ag-110	8.20	1E-05	6.79	1E-05	4.93	1E-05	3.27	1E-05	2.44	1E-05	1.65	1E-05	9.17	1E-06
Ag-111	7.85	1E-05	6.48	1E-05	4.61	1E-05	2.98	1E-05	2.20	1E-05	1.46	1E-05	7.97	1E-06
Cd-109	3.16	1E-05	2.10	1E-05	1.17	1E-05	6.25	1E-06	4.31	1E-06	2.64	1E-06	1.35	1E-06
Sn-117m	4.51	1E-04	3.62	1E-04	2.47	1E-04	1.53	1E-04	1.12	1E-04	7.24	1E-05	3.84	1E-05
Sn-126	1.42	1E-04	1.07	1E-04	6.77	1E-05	3.94	1E-05	2.79	1E-05	1.76	1E-05	9.16	1E-06
Sb-124	4.48	1E-03	3.73	1E-03	2.74	1E-03	1.85	1E-03	1.40	1E-03	9.56	1E-04	5.36	1E-04
Sb-125	1.20	1E-03	9.88	1E-04	7.10	1E-04	4.66	1E-04	3.45	1E-04	2.31	1E-04	1.28	1E-04
Sb-126m	4.21	1E-03	3.48	1E-03	2.52	1E-03	1.67	1E-03	1.24	1E-03	8.38	1E-04	4.65	1E-04
Sb-126	7.44	1E-03	6.16	1E-03	4.47	1E-03	2.96	1E-03	2.21	1E-03	1.49	1E-03	8.29	1E-04
Sb-127	1.88	1E-03	1.56	1E-03	1.13	1E-03	7.45	1E-04	5.56	1E-04	3.74	1E-04	2.07	1E-04
Sb-128	8.22	1E-03	6.81	1E-03	4.95	1E-03	3.28	1E-03	2.46	1E-03	1.66	1E-03	9.22	1E-04

		放射性物質の土	壌中における鉛	直分布を表すノ	ペラメータ β	(g • cm ⁻²)	
	3.0	5.0	10	20	30	50	100
Sb-129	3.64 1E-03	3.02 1E-03	2.21 1E-03	1.48 1E-03	1.12 1E-03	7.62 1E-04	4.26 1E-04
Sb-130	8.50 1E-03	7.03 1E-03	5.12 1E-03	3.40 1E-03	2.56 1E-03	1.73 1E-03	9.62 1E-04
Sb-131	4.99 1E-03	4.15 1E-03	3.06 1E-03	2.06 1E-03	1.56 1E-03	1.07 1E-03	5.98 1E-04
Te-123m	4.30 1E-04	3.45 1E-04	2.35 1E-04	1.46 1E-04	1.06 1E-04	6.90 1E-05	3.66 1E-05
Te-125m	5.03 1E-05	3.20 1E-05	1.68 1E-05	8.61 1E-06	5.85 1E-06	3.54 1E-06	1.75 1E-06
Te-127m	1.61 1E-05	1.03 1E-05	5.46 1E-06	2.82 1E-06	1.92 1E-06	1.17 1E-06	5.83 1E-07
Te-12/	1.41 IE-05	1.1/ IE-05	8.35 IE-06	5.44 IE-06	4.02 IE-06	2.67 IE-06	1.4/ IE-06
Te-129m	8.94 IE-05	7.18 IE-03	5.08 IE-05	3.32 IE-05	2.4/ IE-05	1.00 IE-05	9.20 IE-00
Te-131m	3 70 1E-03	3.06 1E-03	9.00 TE 03	1.49 1E-03	4.70 TE 03	7.60 1E-04	1.73 1E 03
Te-131	1.14 1E-03	9.41 1E-04	674 1E-04	4 40 1E-04	3 27 1E-04	2.19 1E-04	1.20 1E-04
Te-132	6.76 1E-04	5.44 1E-04	3.76 1E-04	2.38 1E-04	1.75 1E-04	1.14 1E-04	6.13 1E-05
Te-133m	4.67 1E-03	3.87 1E-03	2.83 1E-03	1.89 1E-03	1.43 1E-03	9.69 1E-04	5.40 1E-04
Te-133	3.01 1E-03	2.50 1E-03	1.83 1E-03	1.22 1E-03	9.20 1E-04	6.25 1E-04	3.49 1E-04
Te-134	2.40 1E-03	1.97 1E-03	1.42 1E-03	9.28 1E-04	6.91 1E-04	4.63 1E-04	2.55 1E-04
I-128	2.53 1E-04	2.09 1E-04	1.50 1E-04	9.86 1E-05	7.30 1E-05	4.87 1E-05	2.68 1E-05
I-129	3.86 1E-05	2.48 1E-05	1.32 1E-05	6.76 1E-06	4.60 1E-06	2.78 1E-06	1.38 1E-06
I-130	5.75 1E-03	4.76 1E-03	3.45 1E-03	2.29 1E-03	1.71 1E-03	1.15 1E-03	6.40 1E-04
I-131	1.11 1E-03	9.16 1E-04	6.55 1E-04	4.26 1E-04	3.15 1E-04	2.10 1E-04	1.15 1E-04
I-132	5.86 1E-03	4.86 1E-03	3.55 1E-03	2.36 1E-03	1.// 1E-03	1.20 1E-03	6./0 1E-04
I=133 I=124	1.07 IE-03	1.38 IE-03	1.00 IE-03	0.03 IE-04	4.93 IE-04	3.32 IE-04	1.84 IE-04
I 134 I-135	3.74 1E-03	3.12 1E-03	2.30 1E-03	1.56 1E-03	1 18 1E-03	8.12 1E-04	4.57 1E-04
Cs-134m	6.41 1E-05	4.91 1E-05	3.16 1E-05	1.88 1E-05	1.35 1E-05	8.65 1E-06	4.54 1E-06
Cs-134	4.12 1E-03	3.41 1E-03	2.48 1E-03	1.65 1E-03	1.23 1E-03	8.35 1E-04	4.64 1E-04
Cs-136	5.42 1E-03	4.48 1E-03	3.27 1E-03	2.18 1E-03	1.65 1E-03	1.12 1E-03	6.21 1E-04
Cs-137	1.51 1E-03	1.25 1E-03	9.09 1E-04	6.03 1E-04	4.50 1E-04	3.04 1E-04	1.69 1E-04
Cs-138	5.45 1E-03	4.54 1E-03	3.36 1E-03	2.28 1E-03	1.74 1E-03	1.19 1E-03	6.72 1E-04
Ba-133	1.13 1E-03	9.16 1E-04	6.41 1E-04	4.09 1E-04	3.01 1E-04	1.99 1E-04	1.08 1E-04
Ba-137m	1.60 1E-03	1.32 1E-03	9.61 1E-04	6.37 1E-04	4.75 1E-04	3.21 1E-04	1.79 1E-04
Ba-139	1.34 1E-04	1.09 1E-04	7.53 1E-05	4.75 1E-05	3.48 1E-05	2.27 1E-05	1.22 1E-05
Ba-140	5.07 IE-04	4.18 IE-04	2.99 IE-04	1.90 IE-04	1.45 IE-04	9.69 IE-05	5.33 IE-05
La-140	5.44 TE-03	4.53 TE-05	3.35 TE-03	2.20 TE=03	1.72 TE-03	1.18 1E-03	0.02 TE-04
La 141	5.13 1E-03	4.30 1E-03	3.20 1E-03	2.30 TE 03	1.68 1E-03	1.30 TE 03	6.58 1E-04
Ce-141	2.25 1E-04	1.80 1E-04	1.22 1E-04	7.54 1E-05	5.47 1E-05	3.54 1E-05	1.88 1E-05
Ce-143	7.70 1E-04	6.27 1E-04	4.42 1E-04	2.86 1E-04	2.12 1E-04	1.41 1E-04	7.71 1E-05
Ce-144	5.38 1E-05	4.25 1E-05	2.81 1E-05	1.71 1E-05	1.23 1E-05	7.92 1E-06	4.18 1E-06
Pr-143	2.34 1E-11	1.94 1E-11	1.41 1E-11	9.39 1E-12	7.04 1E-12	4.77 1E-12	2.65 1E-12
Pr-144m	2.28 1E-05	1.54 1E-05	8.68 1E-06	4.72 1E-06	3.29 1E-06	2.05 1E-06	1.05 1E-06
Pr-144	6.60 1E-05	5.51 1E-05	4.08 1E-05	2.77 1E-05	2.11 1E-05	1.45 1E-05	8.18 1E-06
Pr-145	4.74 1E-05	3.91 1E-05	2.85 1E-05	1.90 1E-05	1.43 1E-05	9.68 1E-06	5.39 1E-06
Nd-14/	3./9 1E-04	3.05 1E-04	2.11 1E-04	1.35 1E-04	9.90 1E-05	6.55 1E-05	3.5/ 1E-05
Pm=147 Pm=148m	1.21 IE-08	9.48 IE-09	0.22 IE-09	3.74 IE-09 2.13 1E-03	2./0 IE-09	1./3 IE-09	9.00 IE-10 5.03 IE-04
Pm-148	1.40 1E-03	1.17 1E-03	8.58 1E-04	5 77 1E-04	4.36 1E-04	2.98 1E-04	1.67 1E-04
Pm-149	3.46 1E-05	2.85 1E-05	2.03 1E-05	1.31 1E-05	9.72 1E-06	6.45 1E-06	3.53 1E-06
Pm-151	9.31 1E-04	7.62 1E-04	5.40 1E-04	3.49 1E-04	2.59 1E-04	1.72 1E-04	9.40 1E-05
Sm-151	6.04 1E-09	3.73 1E-09	1.92 1E-09	9.57 1E-10	6.40 1E-10	3.80 1E-10	1.92 1E-10
Eu-152m	7.70 1E-04	6.34 1E-04	4.60 1E-04	3.06 1E-04	2.30 1E-04	1.56 1E-04	8.67 1E-05
Eu-152	2.93 1E-03	2.41 1E-03	1.76 1E-03	1.17 1E-03	8.81 1E-04	5.98 1E-04	3.34 1E-04
Eu-154	2.80 1E-03	2.31 1E-03	1.69 1E-03	1.13 1E-03	8.50 1E-04	5.78 1E-04	3.23 1E-04
Eu-155	1.65 1E-04	1.27 1E-04	8.09 1E-05	4.75 1E-05	3.40 1E-05	2.15 1E-05	1.12 1E-05
Eu-156	2.84 IE-03	2.3/ IE-03	1.75 IE-03	1.18 IE-03	9.01 IE-04	6.18 IE-04	3.4/ IE-04
10-100 Yh-160	2.04 IE-03	2.30 IE-U3 697 1E-04	1./1 IE-U3 4.58 1E-04	1.14 IE-U3 2.78 1E-04	0.02 IE-04	1.00 IE-04	3.20 IE-04
Hf-181	1.52 1F-04	1.25 1F-03	4.50 12-04 8.87 1F-04	5.76 1F-04	2.01 1E-04 4.24 1F-04	2.82 1E-04	1.54 1F-04
Ta-182	3.15 1E-03	2.59 1E-03	1.89 1E-03	1.26 1E-03	9.55 1E-04	6.51 1E-04	3.63 1E-04
W-185	1.38 1E-07	1.07 1E-07	6.84 1E-08	4.05 1E-08	2.88 1E-08	1.83 1E-08	9.59 1E-09
W-187	1.22 1E-03	1.00 1E-03	7.20 1E-04	4.73 1E-04	3.51 1E-04	2.36 1E-04	1.30 1E-04
Ir-192	2.38 1E-03	1.96 1E-03	1.40 1E-03	9.10 1E-04	6.73 1E-04	4.47 1E-04	2.46 1E-04
Hg-203	7.14 1E-04	5.85 1E-04	4.12 1E-04	2.64 1E-04	1.95 1E-04	1.28 1E-04	6.98 1E-05
TI-208	7.19 1E-03	6.04 1E-03	4.49 1E-03	3.08 1E-03	2.36 1E-03	1.63 1E-03	9.27 1E-04
Pb-210	4.6/ 1E-06	3.19 1E-06	1./9 1E-06	9.61 1E-07	0.61 1E-07	4.03 1E-07	2.04 1E-07
Pb-212	4.2/ IE-04	3.43 IE-04 604 1F-04	2.30 IE-04 427 1E-04	1.30 IE-04 2.75 IE-04	1.10 IE-04 2.03 1E-04	1.20 IE-03	3.07 IE-05 7.34 1E-05
	7.55 IL 04			L., U IL UT	2.00 IL UT		IL 00

	放射性物質の土壌中における鉛直分布を表すパラメータ eta (g・cm $^{-2}$)													
	3.0)	5.	0	10)	20)	30	0	5	0	10	0
Bi-212	2.57	1E-04	2.13	1E-04	1.56	1E-04	1.05	1E-04	7.88	1E-05	5.36	1E-05	3.00	1E-05
Bi-214	3.49	1E-03	2.91	1E-03	2.15	1E-03	1.45	1E-03	1.10	1E-03	7.55	1E-04	4.24	1E-04
Po-216	3.96	1E-08	3.28	1E-08	2.39	1E-08	1.60	1E-08	1.20	1E-08	8.13	1E-09	4.53	1E-09
Ra-224	3.15	1E-05	2.57	1E-05	1.80	1E-05	1.15	1E-05	8.47	1E-06	5.56	1E-06	3.00	1E-06
Ra-226	2.23	1E-05	1.80	1E-05	1.25	1E-05	7.85	1E-06	5.75	1E-06	3.74	1E-06	1.99	1E-06
Ac-228	2.18	1E-03	1.81	1E-03	1.32	1E-03	8.80	1E-04	6.64	1E-04	4.50	1E-04	2.51	1E-04
Th-228	6.26	1E-06	4.89	1E-06	3.22	1E-06	1.96	1E-06	1.41	1E-06	9.06	1E-07	4.78	1E-07
Th-231	4.03	1E-05	2.99	1E-05	1.86	1E-05	1.07	1E-05	7.61	1E-06	4.80	1E-06	2.50	1E-06
Th-232	8.37	1E-07	5.84	1E-07	3.41	1E-07	1.90	1E-07	1.31	1E-07	8.19	1E-08	4.23	1E-08
Th-234	2.47	1E-05	1.89	1E-05	1.19	1E-05	6.97	1E-06	4.94	1E-06	3.12	1E-06	1.63	1E-06
Pa-233	6.33	1E-04	5.17	1E-04	3.62	1E-04	2.31	1E-04	1.70	1E-04	1.12	1E-04	6.07	1E-05
U-232	1.32	1E-06	9.11	1E-07	5.27	1E-07	2.96	1E-07	2.05	1E-07	1.28	1E-07	6.67	1E-08
U-234	9.34	1E-07	6.19	1E-07	3.41	1E-07	1.85	1E-07	1.26	1E-07	7.80	1E-08	4.02	1E-08
U-235	4.95	1E-04	4.01	1E-04	2.77	1E-04	1.74	1E-04	1.27	1E-04	8.28	1E-05	4.40	1E-05
U-236	7.12	1E-07	4.57	1E-07	2.42	1E-07	1.28	1E-07	8.63	1E-08	5.27	1E-08	2.70	1E-08
U-237	3.84	1E-04	3.03	1E-04	2.03	1E-04	1.24	1E-04	8.98	1E-05	5.78	1E-05	3.06	1E-05
U-238	5.79	1E-07	3.73	1E-07	1.99	1E-07	1.07	1E-07	7.23	1E-08	4.45	1E-08	2.30	1E-08
Np-237	6.92	1E-05	5.26	1E-05	3.35	1E-05	1.97	1E-05	1.41	1E-05	8.96	1E-06	4.67	1E-06
Np-238	1.59	1E-03	1.32	1E-03	9.68	1E-04	6.49	1E-04	4.92	1E-04	3.35	1E-04	1.86	1E-04
Np-239	5.16	1E-04	4.16	1E-04	2.84	1E-04	1.77	1E-04	1.29	1E-04	8.39	1E-05	4.49	1E-05
Pu-236	9.96	1E-07	6.26	1E-07	3.24	1E-07	1.68	1E-07	1.12	1E-07	6.79	1E-08	3.48	1E-08
Pu-238	8.68	1E-07	5.39	1E-07	2.75	1E-07	1.41	1E-07	9.35	1E-08	5.63	1E-08	2.88	1E-08
Pu-239	5.40	1E-07	3.65	1E-07	2.08	1E-07	1.17	1E-07	8.09	1E-08	5.07	1E-08	2.66	1E-08
Pu-240	8.28	1E-07	5.16	1E-07	2.64	1E-07	1.36	1E-07	9.00	1E-08	5.42	1E-08	2.77	1E-08
Pu-241	4.48	1E-09	3.54	1E-09	2.33	1E-09	1.40	1E-09	1.01	1E-09	6.48	1E-10	3.40	1E-10
Pu-242	9.06	1E-07	6.09	1E-07	3.52	1E-07	2.02	1E-07	1.42	1E-07	9.06	1E-08	4.84	1E-08
Am-241	5.98	1E-05	4.27	1E-05	2.52	1E-05	1.40	1E-05	9.64	1E-06	5.98	1E-06	3.08	1E-06
Am-242m	3.37	1E-06	2.17	1E-06	1.17	1E-06	6.17	1E-07	4.19	1E-07	2.55	1E-07	1.31	1E-07
Am-242	4.08	1E-05	3.19	1E-05	2.08	1E-05	1.24	1E-05	8.93	1E-06	5.69	1E-06	2.98	1E-06
Am-243	1.48	1E-04	1.12	1E-04	6.97	1E-05	4.02	1E-05	2.82	1E-05	1.78	1E-05	9.23	1E-06
Cm-242	9.89	1E-07	6.12	1E-07	3.14	1E-07	1.60	1E-07	1.06	1E-07	6.37	1E-08	3.25	1E-08
Cm-243	3.75	1E-04	3.03	1E-04	2.07	1E-04	1.30	1E-04	9.48	1E-05	6.17	1E-05	3.30	1E-05
Cm-244	8.85	1E-07	5.57	1E-07	2.93	1E-07	1.53	1E-07	1.03	1E-07	6.29	1E-08	3.25	1E-08
Cm-245	2.89	1E-04	2.30	1E-04	1.53	1E-04	9.26	1E-05	6.71	1E-05	4.30	1E-05	2.26	1E-05
Cm-246	1.03	1E-05	8.36	1E-06	6.04	1E-06	4.01	1E-06	3.02	1E-06	2.05	1E-06	1.14	1E-06
Cm-247	9.13	1E-04	7.54	1E-04	5.40	1E-04	3.52	1E-04	2.60	1E-04	1.73	1E-04	9.48	1E-05
Cm-248	3.45	1E-03	2.85	1E-03	2.09	1E-03	1.40	1E-03	1.06	1E-03	7.19	1E-04	4.00	1E-04

- ・ 「放射性セシウム沈着量の面的調査」
 - 三上智、斎藤公明:平成26年度放射性物質測定調査委託費(東京電力株式会社福島第 一原子力発電所事故に伴う放射性物質の分布データの集約及び移行モデルの開発)事業 成果報告書(2015)
- 「In Situ Ge(Li) and NaI(Tl) Gamma-ray Spectrometry」
 H.L.Beck, J.DeCampo and C.Gogolak : Report HASL-258 (1972)
- 「Gamma-Ray Spectrometry in the Environment」 International Commission on Radiation Units and Measurements: ICRU Report 53(1994)
- ・「ゲルマニウム半導体検出器によるガンマ線スペクトロメトリー」 : 放射能測定法シリーズ No. 7 (1992)
- 「Radiation protection instrumentation Measurement of discrete radionuclides in the environment - In situ photon spectrometry system using a germanium detector」 : IEC 61275 Ed.2 (2013)
- 「ENSDF(Evaluated Nuclear Structure Data File)」
 : National Nuclear Data Center, Brookhaven(2016)
- 「Field Gamma-Ray Spectrometry」
 K. M. Miller : EML Procedures Manual, HASL-300, Section3.3 (1997)
- 「環境試料採取法」
 - :放射能測定法シリーズ No. 16(1983)
- Generic procedures for monitoring in a nuclear or radiological emergency J International Atomic Energy Agency : IAEA-TECDOC-1092 (1999)
- ・ 「PHOTX データベース」
- 「可搬型 Ge (Li) 検出器を用いた環境ガンマ線の in-situ 測定」
 阪井英次、寺田博海、片桐政樹: JAERI-M6498 (1976)
- 「MCNP-A General Monte Carlo N-particle Transport Code Version 4C」
 Briesmeister, J.F. : Los Alamos National Laboratory Report LA-13709-M (2000)
- 「Performance of Digital Signal Processors for Gamma Spectrometry」 Canberra Industries, Inc. : Application Note (2008)
- 「Comparisons of the Portable Digital Spectrometer Systems」
 Duc T. Vo, Phyllis A. Russo, Los Alamos NATIONAL LABORATORY : LA-13895-MS, (2002)
- ・「発電用軽水型原子炉施設の安全審査における一般公衆の線量評価について」 原子力安全委員会:(2001)
- 「土壌中の放射性セシウムの深度分布調査」
 松田規宏、斎藤公明:平成27年度放射性物質測定調査委託費(東京電力株式会社福島
 第一原子力発電所事故に伴う放射性物質の分布データの集約)事業成果報告書(2016)

Radionuclides」

F.Zapata : (2010)

- 「Depth profiles of radioactive cesium in soil using a scraper plate over a wide area surrounding the Fukushima Dai-ichi Nuclear Power Plant」
 - N.Matsuda, S.Mikami, S.Shimoura, J.Takahashi, M.Nakano, K.Shimada, K.Uno,
 - S.Hagiwara, K.Saito: Journal of Environmental Radioactivity 139, 427-434 (2015)
- [Fundamental data on environmental gamma-ray fields in the air due to source in the ground]
 - K.Saito, P.JACOB: JAERI-Data/Code 98-001 (1998)
 - 「In Situ Gamma Spectrometry Intercomparison in Fukushima, Japan」
 - S. Mikami, S. Sato, Y. Hoshide, R. Sakamoto, N. Okuda, K. Saito : J. Health Phys., 50 (3), 182 \sim 188 (2015)
- 「Ambient dose equivalent conversion coefficients for radionuclides exponentially distributed in the ground」
 - K. Saito, N. Petoussi-Henss : Journal of Nuclear Science and Technology (2014)

本書の作成経過、委員会名簿及び会議開催経過

1. 本書の作成経過

本書は平成27年度放射線対策委託費(放射能測定法シリーズ改訂)事業で、公益財団法人 日本分析センターに委託した成果を、原子力規制委員会が設置した環境放射線モニタリング技 術検討チームにおける議論を経て作成したものである。

- 2. 平成27年度放射線対策委託費(放射能測定法シリーズ改訂)事業内に設置した「放射能測 定法シリーズ改訂検討委員会」の委員名簿と委員会開催日
 - 委員長 中村尚司 東北大学名誉教授
 - 委員 阿部幸雄 福島県環境創造センター 環境放射線センター 次長兼分析・監視 課長
 - 大野 剛 学習院大学理学部化学科 助教
 - 木村秀樹 青森県原子力センター 所長
 - 黒澤忠弘 国立研究開発法人産業技術総合研究所 分析計測標準研究部門放 射線標準研究グループ 主任研究員
 - 斎藤公明 国立研究開発法人日本原子力研究開発機構 福島研究開発部門福 島環境安全センター 東京事務所 特任参事
 - 三枝 純 国立研究開発法人日本原子力研究開発機構 福島研究開発部門福 島環境安全センター 放射線計測技術グループ 研究主幹兼サブリ ーダー
 - 玉柿励治 福井県原子力環境監視センター 福井分析管理室 主任研究員
 - 長岡 鋭 国立研究開発法人日本原子力研究開発機構 研究嘱託
 - 藤田博喜 国立研究開発法人日本原子力研究開発機構 バックエンド研究開 発部門 核燃料サイクル工学研究所 放射線管理部環境監視課 課 長代理

(敬称略・五十音順)

- 事務局 公益財団法人日本分析センター
- 第一回 平成27年11月4日
- 第二回 平成28年1月14日
- 第三回 平成28年3月4日
- 3. 原子力規制委員会 環境放射線モニタリング技術検討チーム構成メンバーと会合開催日 原子力規制委員会
 - 伴 信彦 委員

外部専門家

青野辰雄 国立研究開発法人量子科学技術研究開発機構放射線医学総合研究

所福島再生支援本部環境動態研究チーム チームリーダー

- 飯本武志 国立大学法人東京大学 准教授
- 伊東清実 岡山県環境保健センター 次長
- 髙橋知之 京都大学原子炉実験所 准教授
- 田上恵子 国立研究開発法人量子科学技術研究開発機構放射線医学総合研究 所福島再生支援本部環境移行パラメータ研究チーム 上席研究員
- 武石 稔 国立研究開発法人日本原子力研究開発機構福島研究開発部門福島 環境安全センター 分析技術開発アドバイザー
- 百瀬琢麿 国立研究開発法人日本原子力研究開発機構核燃料サイクル工学研 究所 副所長
- 山澤弘実 国立大学法人名古屋大学 教授

(敬称略・五十音順)

- 原子力規制庁
 - 片山 啓 核物質·放射線総括審議官
 - 監視情報課
 - 南山力生 課長
 - 久野 聡 企画官
 - 佐々木潤 地方調整専門官
 - 相原佑康 課長補佐
 - 木村仁美 課長補佐
 - 大平智章 解析評価専門官
 - 左海功三 解析評価専門官
 - 山田純也 課長補佐
 - 上杉正樹 技術参与
 - 監視情報課放射線環境対策室
 - 山本郷史 室長
 - 及川真司 環境放射能対策官
 - 原子力災害対策·核物質防護課
 - 佐藤 暁 課長
 - 藤元憲三 技術参与
 - 放射線対策·保障措置課
 - 米原英典 專門職
 - 放射線対策·保障措置課放射線規制室

中村尚司 技術参与

環境放射線モニタリング技術検討チーム第三回会合 平成29年3月16日開催

- 4. 本書を作成するにあたっては、下記の方々に協力を得た。
 - 田中博幸 公益財団法人日本分析センター 放射能分析事業部 y 線解析グル ープ 上級技術員
 - 新田 済 公益財団法人日本分析センター 放射能分析事業部γ線解析グル ープ リーダー
 - 松田規宏 国立研究開発法人日本原子力研究開発機構 福島研究開発部門福 島環境安全センター環境動態研究グループ 研究員
 - 松田秀夫 公益財団法人日本分析センター 放射能分析事業部 γ 線解析グル ープ 上級技術員
 - 三上 智 国立研究開発法人日本原子力研究開発機構 福島研究開発部門福 島環境安全センター環境動態研究グループ 技術副主幹

(敬称略・五十音順)

改訂履歴	
平成 20 年 3 月	制定
平成 29 年 3 月	改訂