放射能測定法シリーズ 20

空間γ線スペクトル測定法

平成2年

文 部 科 学 省

放射線審議会測定部会の委員及び専門委員

委員(部会長)	浜	田	達	<u> </u>	社団法人 日本アイソトープ協会
	池	田	長	生	社団法人 日本アイソトープ協会
	市	川	平 三	郎	国立がんセンター
	柏	木		寛	電子技術総合研究所
	阪	上	ТĒ	信	元金沢大学
	佐	藤	孝	平	電子技術総合研究所
	鈴	木	郁	生	国立衛生試験所
	谷	村	顕	雄	国立衛生試験所
	団	野	皓	文	南九州大学
	敦	賀	花	人	財団法人 海洋生物環境研究所
	浜	П		博	財団法人 日本分析センター
	山	県		登	元 国立公衆衛生院
専 門 委 員	阿	部	史	朗	放射線医学総合研究所
	石	川	友	清	財団法人 セコム科学技術振興財団
	岡	野	眞	治	元 理化学研究所
	葛	城	幸	雄	元 気象研究所
	小	林	宏	信	元 農業環境技術研究所
	塩	崎		愈	海上保安庁
	原	禮	之	助	セイコー電子工業株式会社

本分析法の作成にあたっては、上記委員のほか次の方々の協力を得た。

飯	島	敏	哲	元 日本原子力研究所
伊	澤	正	実	元 放射線医学総合研究所
笠	井		篤	元 日本原子力研究所
桂	ЩL	幸	典	近畿大学
加	藤		朗	財団法人 日本保安用品協会
河	田		燕	電子技術総合研究所
黒	Л	良	康	元 動力炉・核燃料開発事業団
河	野	郁	夫	関西電力株式会社
清	水		誠	東京大学
高	橋	幹		京都大学
高	橋	寿	郎	立教大学
滝	沢	行	雄	秋田大学
寺	西	英	Ξ	電子技術総合研究所
辻	本		忠	京都大学
中	島	敬	行	名古屋大学
中	島	敏	行	放射線医学総合研究所
橋	本	達	也	日本原子力発電株式会社
武	藤		正	元 動力炉・核燃料開発事業団
松	岡	信	明	射団法人 九州環境管理協会
松	本		健	電子技術総合研究所
森	田	茂	樹	元 茨城県公害技術センター

(敬称略・五十音順)

序論		1
第1章	NaI(T1)シンチレーションスペクトロメータによる空間ヶ線計測手順	4
1. 1	シンチレーションスペクトロメータの構成と必要な機器類	4
1. 2	計測の手順(測定機器の事前点検と性能試験)	6
1. 3	野外測定の実施	7
1.4	測定データの一次処理	9
1. 5	エネルギー校正のためのデータ取得	11
第2章	N a I(T l)シンチレーションスペクトロメータの計測データに用いるレス	
	ポンス関数	12
2. 1	レスポンス関数の意味	12
2. 2	レスポンス関数の作成	12
2. 3	レスポンス関数の適用	13
第3章	N a I (T l) シンチレーションスペクトロメータによる計測データの処理 …	14
3. 1	測定されたパルス波高分布のエネルギー補正	14
3. 2	入射スペクトルへの変換	15
3. 3	結果の表現	16
3. 4	放射性核種別線量寄与の算出	17
第4章	ゲルマニウム半導体スペクトロメータによる空間γ線計測手順	20
4. 1	計測の概要	20
4. 2	ゲルマニウム半導体スペクトロメータの具備すべき条件	20
4.3	計測の手順	21
第5章	ゲルマニウム半導体スペクトロメータによる計測データの処理	28
5. 1	処理の手順	28
5. 2	平滑処理(スムージング)	30
5.3	ピークの検索とピーク面積の求め方	30
5.4	核種の同定	33
5.5	光子束密度の計算	35
5.6	放射性核種の同定にもとづく直接 r 線線量の決定	36
5.7	放射性核種別線量寄与の算出	37

第6	章 ゲルマニウム半導体スペクトロメータを用いて得た処理結果の表現	41
6.	1 放射能レベルの推定	41
6.	2 線量評価	42
第7	章 基準γ線源の利用と校正	44
解	説	47
1.	NaI(T1)シンチレーション検出器の特性	49
2.	ゲルマニウム半導体検出器の特性	54
3.	レスポンス関数の作成	56
4.	実効エネルギーと散乱ヶ線	69
5.	基準γ線源の利用と校正	83
6.	環境放射能レベル推定に使われる式	96
7.	環境γ線の現地測定におけるデータの処理法	100
	7.1 HASL法	100
	7.2 ストリッピング法	105
	7.3 マトリックス法による天然放射性核種別線量寄与の解析	113
付	録	115
1.	ストリッピング法によるNaI(T1)シンチレーション	
	スペクトロメータのデータ処理の例	117
2.	逐次近似法によるNaI(T1)シンチレーション	
	スペクトルのアンフォールディングの例	130
3.	レスポンス関数の計算例	135
4.	線量換算係数	147
参考	資料	151
1.	Nal(Tl)シンチレーションスペクトロメータによる測定結果の不確かさ	
	(精密さと正確さ)と問題点	153
2.	各種計測器による測定結果の比較例	156
参考	文献	159

序 論

本マニュアルは、NaI(T1)シンチレーション検出器又はゲルマニウム半導体検出 器を備えたガンマ線スペクトロメータによる、現場における環境ガンマ線スペクトルの測 定とそのモニタリングへの応用に関する標準的な手法を示したものである。

原子力施設周辺における環境ガンマ線モニタリングには、現在、TLDが集積線量の測 定に、また連続モニタが主として線量率の変動の監視に使用され、十分にその機能を果た している。しかしながら、たとえば放射線発生源の特性の変化など異常の原因究明や、線 量に対する核種別の寄与の割合の評価のためには、上記のデータに加えてさらにこれを補 強するデータが必要であり、そのうちで最も有力と考えられるのが、環境ガンマ線のエネ ルギー情報である。エネルギー情報があれば、人体の深部線量当量の算定や、緊急時にお ける環境の放射性核種の迅速な同定などにも役立たせることができる。

NaI(T1)シンチレーションスペクトロメータと、ゲルマニウム半導体スペクトロ メータには、それぞれの特性にちがいがあり、その特長とそれを生かした役割は以下のようなものである。

NaI(T1)シンチレーションスペクトロメータは、ゲルマニウム半導体スペクトロ メータにくらべてエネルギー分解能が劣るが、検出器の形状が規格化されているなど構造 が画一化されているため、出力波高分布の解析方法を統一することによって、測定結果の 一致性を良くすることができる。また、現場での取扱も容易である。その主な役割は環境 ガンマ線のスペクトルとエネルギー別の線量寄与の測定および線源核種のおよその同定と 考えられる。

これに対し、ゲルマニウム半導体スペクトロメータは、その形状が規格化できないため、 各自がデータ解析に必要な基礎データを得る必要があり、また現場での取扱がやや面倒で あるなどの欠点があるが、その代わり抜群のエネルギー分解能をもっている。したがって、 その第一の役割は環境に存在する放射性核種の同定と定量であり、またそれにもとづいて 核種別の線量寄与を知ることも可能である。

本マニュアルは、以上のような両者の相補的役割を認めた上で、上記各項目のそれぞれ について適用方法を述べてある。第1章から第3章まではNaI(T1)シンチレーショ ンスペクトロメータに関する事項、第4章から第6章まではゲルマニウム半導体スペクト ロメータに関する事項、また第7章には両者に共通の事項が取り扱われている。

- 1 -

本マニュアルに使用している用語の意味は次のとおりである。

○検出器保護ケース

野外環境で放射線測定を行う場合、検出器を保護する目的で、金属または合成樹脂など で作られたケース内に検出器を納めて用いることが多い。このケースを検出器保護ケー スという。

()デュワ

ゲルマニウム半導体検出器冷却用に用いられる液体チッ素充塡用容器と冷却装置(クラ イオスタット)部まで含めたものをいう。

○基準γ線源

線量率の値付けについて、国家標準とのトレーサビリティが確立されている線源をいう。 通常線源中心から1mの点の照射線量率が値付けされている。

○ 放射能標準線源

放射能(Bq)の値付けについて国家標準とのトレーサビリティが確立されている線源 をいう。

○エネルギー校正線源

放出γ線についそのエネルギーが正確に求められている線源をいう。

○チェック用線源

計測装置の動作などを点検する目的で使用される長半減期の密封線源で、その強度は参 考程度の値付けがなされているのが普通である。

○直接線

線源から検出器まで無散乱(微小角散乱を含む)で到達した光子線。

○レスポンス関数

検出されたパルス波高分布から検出器へ入射したγ線のスペクトルを求める際に用いら れ、単一エネルギー光子入射時における検出器の示す応答に関する、検出器の効率を含 めた関数をいう。 ○逐次近似法

複数のレスポンス関数(レスポンスマトリックス)からγ線入射スペクトルを得る際 (デコンボリューションdeconvolution,またはアンフォールデングunfolding)に生ずる 不正確さを近似の次数を逐次高めて最小にする解析法。

○ストリッピング法

レスポンス関数を用いて入射 γ 線スペクトルを得るスペクトル解析法。高エネルギー領 域の数をレスポンス関数と一致させる定数を定め、逐次低エネルギー領域にこの操作を 進めて解析を行う。高いエネルギーから逐次はぎとることからこの名がある。ピーリン グオフともいう。

○粒子束密度(光子束密度)

単位時間あたりの粒子フルエンス(個/cml)で、単位は個/cml・s である。

○実効エネルギー

複数または連続的なエネルギー分布を持つ放射線によって物質に生ずる効果と同一の効 果を持つ、単一エネルギー放射線に置き換えそのエネルギー値を実効エネルギーといい、 普通おなじ半価層を示す単一エネルギーを用いることが多い。

○γ線エネルギースペクトル

γ線場の真のエネルギースペクトルをいう。

○パルス波高分布

測定されたままのパルスのスペクトルの波高分布をいう。

○補正波高分布

パルス波高分布に補正を加え、エネルギーに対する波高値の比が一定になるようにした 分布をいう。

○入射γ線スペクトル

補正波高分布をもとにして、レスポンス関数を適用し、γ線エネルギースペクトルに戻 す処理をしたスペクトル分布をいう。

○放射能レベル

計測地点における入射 γ 線光子東密度から得られた環境の平均放射能濃度。一般に表面 分布の場合は単位面積当たりの放射能、それ以外の場合は単位体積あたり又は単位質量 あたりの放射能で表す。

第1章 Nal(Tl)シンチレーションスペクトロメータ による空間y線計測手順

1.1 シンチレーションスペクトロメータの構成と必要な機器類

1.1.1 シンチレーションスペクトロメータの構成

シンチレーションスペクトロメータは検出器、比例増幅器、波高分布器、データ 処理部より構成されている。その代表的な系統図を第1.1図に示す。

検出器とは、シンチレータ、光電子増倍管、前置増幅器を組み合わせたものをい い、光学的に透明な結晶体のシンチレータに放射線が入射すると、パルス的な蛍光 を発する。この光を光電子増倍管で電気信号(パルス信号)に変換し、前置増幅器 を介して比例増幅器に送るものである。この時のパルス信号の大きさは入射した放 射線がシンチレータ内で失ったエネルギーにほぼ比例する。パルス信号の測定には 波高分析器を用いる。波高分析器は比例増幅器を通過したパルス信号を波高別に分 析する装置で、マルチチャネル波高分析器を用いると短時間のうちに能率よくパル ス波高分布の集積ができる。このほか比例増幅器からの信号をA/D変換し、変換 コードを実時間で記録するためにインタフェースを用い直列に並べ、オーディオ用 ステレオテープレコーダなどに一旦記録させ、このテープを後日実験室で再生する ことによりパルス波高分布を得る方式もあり、現場でのスペクトル測定によく用い られる。いずれにしても波高分析器で集積されたパルス波高分布をもとに解析が行 われる。このような波高分析器で集積されたパルス波高分布をデータ処理部でエネ ルギースペクトルに変換し、線量計算などの解析を行うこととなる。

データ処理には主としてコンピュータを使用する。コンピュータが波高分析器に 内蔵されているもの、波高分析器とマイクロコンピュータが直接接続されているも の、またオフラインで大型コンピュータに接続し処理するものなどがある。 放射線検出器

第1.1図 NaI(T1)シンチレーションスペクトロメータの構成

1.1.2 必要な機器類

環境放射線の測定は野外現場に測定器を持ち出して実験することが多い。この場 合、測定器の調整が十分でなかったために、必要な結果が得られないこともあり、 また、現場作業であるので、部品の一部を忘れたために測定ができないようなこと も起きる。

ここでは測定前の調整に必要な試験用機器と現場測定に必要な機器の品目についての一例を以下に示す。

- 1) 試験用機器一覧
- ① パルサ (水銀パルサ等)
- ② アッテネータ (1/1~1/1,000)
- ③ オシロスコープ
- ④ テスタ
- ⑤ チェッキング線源
- 2) 現場測定用機器

- ① 検出器保持用三脚(または四脚)および取付台
- ② 線源保持用三脚および取付台校正時に使用
- ③ 鉛シャドーシールドおよび取付台
- ④ 波高分析器用台、日覆い等
- ⑤ その他

電源コード、テーブルタップ、巻尺、ビニールテープ、ポリ袋(防水用)、 発電機、アース棒、筆記用具等を必要に応じ携帯する。

1.2 計測の手順(測定機器の事前点検と性能試験)

測定システムは、①放射線検出器、②放射線の信号パルスの増幅、整形を行う前置 増幅器、主増幅器、③波高分折器、④測定結果の記録装置の各部より構成される。信 頼性の高い測定結果を得るためにはシステムを構成する各要素についてその働き、特 性を十分に理解し、それぞれが良好に動作する範囲で組み合わせ使用しなければなら ない。システムの使用条件を決める際の調整、選択箇所の主要なものは、

- ① 検出器への印加電圧
- ② 主増幅器の利得、波形整形条件、直流再生回路の直流レベル
- ③ 波高分析器のA/D変換器の変換利得、使用チャネル数

である。この中で、波形整形条件はパルス分解能に関係するだけでなく、シンチレーションパルスの減衰時間に関係してパルス波高値の温度依存性を変化させるので、この点も考慮して条件を選定する。波形整形時定数は通常 0.5~2 μ s の範囲で選ばれる。

波高分析器の使用チャネル数については、NaI(T1)シンチレーション検出器 によるスペクトルの1チャネルあたりのエネルギー幅が数~20keV程度、通常5~ 10keV/chが適当なところから 500~1,000 チャネルとし、3MeV以上に宇宙 線の情報が十分とれるように配慮する。

以上の各点について方針が決まれば、各ユニットの正常動作を確認しつつ次の各項 目について点検と調整を行う。

- ① 直流再生回路の直流レベルの調整
- ② ノイズレベルの試験
- ③ 測定エネルギー範囲の試験と確認

- ④ パルス波高分布の異常の有無の確認
- ⑤ 検出器のエネルギー分解能(半値幅による)試験
- ⑥ パルス波高値対チャネル番号の直線性試験

①の調整(装置によってはないものもある)はチェッキング線源(例えば'''Cs の 0.662MeV γ 線)を用い、オシロスコープによりパルス波形を見て調整する。

②については③の試験と並行して行う。 γ 線の測定エネルギー範囲は最低40k e V から3Me V以上にわたっており、この範囲に波高分析器の低域波高弁別器(Lower Level Discriminator; L L D)、高域波高弁別器(Upper Level Discriminator; U L D)のレベルを設定する。30~40k e Vに近い位置に強いノイズが現れる場合は低エ ネルギー γ 線の測定精度を悪くするのみでなくパルス波高全体の分解能を損なう原因 ともなるので、その原因の除去対策を考えなければならない。L L D はノイズの影響 が出ない範囲で出来るだけ低く設定し、U L D は宇宙線成分の情報を多く得るために 出来るだけ高く設定する。

④は、単一エネルギーの γ 線を用い、パルス波高分布全体の形状、光電ピークの対称性等について異常の有無を確認する。また、宇宙線によるパルスのような過大な信号入力があった場合、増幅回路その他の過渡特性により γ 線領域に異常な信号を出すこともあるので、十分な点検が必要である。

⑤については、'** C s の 0.662M e V γ 線を用い、光電ピークの分解能で良否を 判定する。通常 7 ~ 9 %が正常値であり、10%を越す場合は異常とみて原因の調査を 行う。

⑥については、電気回路部のみの特性と、Nal(Tl)結晶の発光特性を含めた 特性についてこれらを区別して試験を行う。電気的な回路部の特性は水銀パルサー等 を用い、アッテネータを通した各種出力とこれに対応する波高分析器のチャネル番号 の関係から調べる。パルス波高値が0に相当するチャネル番号はγ線のエネルギーを 基準にして得たものとは異なるので、パルス波高分布のエネルギー校正に関連してこ れらの関係を正確に把握しておく(エネルギー校正については後述)。

1.3 野外測定の実施

野外測定は室内試験では見られない厳しい環境、例えば極端な高・低温、高湿度下、 ほこりの多い場所、振動のある状態などのもとで行われる場合が多く、これらに対し てはあらかじめ検出器の断熱対策、装置全体の日覆い、防湿対策等を十分に考えてお くことが必要である。NaI(T1)シンチレーション検出器は特に機械的なショッ クにより破損の恐れがあり、また重力のかかる方向によってシンチレータとガラス間 の剝離を起こしやすいので、運搬に際してはシンチレータを上側に垂直にした状態で 運ぶよう心掛けることが必要である。測定に際しては測定器の各部に対し日覆いをほ どこすことによる温度上昇の防止、保温材による保温対策等を考える。

測定を実施するにあたり検出器の設置高さと方向を測定対象に応じ統一する。検出 器は原則として遮蔽を付けずに、高さを1mに設定して測定する。この際検出器の 方向を記録する。

次の各項目について確認の上、本測定に入る。

機器の使用条件、測定条件の確認

・高圧電源電圧

・主増幅器の利得、波形整形時定数

・波高分析のLLD、ULD、A/D変換利得、チャネル数選定

② 自然放射線およびチェッキング線源による正常動作の確認

ピーク位置があらかじめ予定した位置に来るかどうか、またパルス波高分布が 正しい形状を示しているか、ノイズその他異常な成分が重なっていないかを確認 する。

なお、自然 y 線のエネルギースペクトルから得られるエネルギー情報のみでエネル ギー校正に十分な情報が得られないときは、本測定の前後に数核種のチェッキング線 源によりパルス波高分布を測定、記録しておく。一連の測定では機器の使用条件、測 定条件を変えないことが原則であり、条件を変えなければ、システムの安定性、特性 変化に関する正確な情報がつかめる。測定が長時間に及ぶ時は、温度変化によるゲイ ン変動に留意し、また測定条件を変える際は変更前後にチェッキング線源により十分 な特性データをとる。なお、第1.2図に測定手順例を参考として挙げた。 使用する チェッキング線源は4×10³ B q 前後あるいはこれ以下の強さのものが適当である。 しかし、この程度のものでも、検出器までの距離が1mで10~100n G y / h 前後に なり得るので、本測定時には十分な距離を置くか、鉛遮蔽容器に収納するか適当な対 策をとる必要がある。 1.4 測定データの一次処理

エネルギー校正に備え、チェッキング線源によるパルス波高分布データおよび本測 定によるパルス波高分布データから、 γ線エネルギーに対応する光電ピークチャネル のデータの整理を行う。エネルギー対チャネル番号の関係はほぼ直線関係にあり、各 測定毎にその傾斜に大きな差がなければ正常な測定がなされたものと判断できる。

1.5 エネルギー校正のためのデータ取得

あらかじめ定めたエネルギー校正法に従い必要に応じエネルギー校正を実施する。 校正に用いる γ 線のエネルギーは測定対象の γ 線のエネルギー範囲全体にわたって細 かく得ておくことが望ましいが、使用できるチェッキング線源に限りがあるので、少 数の線源で必要な情報を得る方法をあらかじめ検討しておく。校正点は少なくとも、 50~ 200k e Vの範囲で1点、1~2 M e Vの間で1点を選ぶようにする。このため には、一例として低エネルギー側の校正点として⁵⁷ Co の 0.122 M e V、高エネルギ 一側の校正点として天然核種¹⁰ K o 1.46 M e V あるいは R a 線源中の²¹¹ B i o 1.76 M e V が適当である。これ以外のエネルギーで校正する場合は、第3章を参照して精 度の高いエネルギー校正を実施しなければならない。

第2章 Nal (Tl) シンチレーションスペクトロメータの計 測データに用いるレスポンス関数(解説3参照)

2.1 レスポンス関数の意味

検出器から出力波高分布を観測して、検出器への入射γ線スペクトルを求めるには、 単一エネルギー光子が入射したとき検出器が示す応答(レスポンス)に関する知識が 必要である。エネルギースペクトルN(E)(Eはエネルギー)をもつ光子を観測して パルス波高分布P(h)を得たとすれば、一般に

P (h) = $\int_{0}^{E} \epsilon$ (E) K (E, h) N (E) d E (2-1)

の積分方程式で表現できる。この式中の ε (E)は検出器の効率である。この式の核K(E, h)または ε (E)K(E, h)をレスポンス関数と呼ぶ。前者は単一エネルギー光子入射時に得られるパルス波高分布群の面積をすべて1に規格化したものであり、後者は単一エネルギー光子入射時に得られるパルス波高分布群の意味である。

レスポンス関数は実験的方法かモンテカルロシミュレーションによって決定する。 レスポンス関数は対象とする放射線源と使用する検出器の配置に依存するものである。 環境における放射線は一般に等方的でないから、方向依存性の小さい検出器(球形) を用いるか、円柱形の検出器を使用するときには方向依存性に対する特別の考慮が必 要である。

2.2 レスポンス関数の作成

いくつかの異なったエネルギーの単一エネルギー光子に対する検出器のパルス波高 分布群を測定し、それぞれ対応した入射光子フルエンスで除することにより得る。こ のとき線源は円柱形検出器の軸に直角の方向に置き、散乱線の寄与が少なく、かつ平 行ビームに近くなるような照射条件とする。任意のエネルギーのパルス波高分布は補 間により求める。他にモンテカルロシミュレーションによる作成法もある。

レスポンス関数の区切り幅(またはチャネル)は10、20、50、100 k e V 等々、解 析の目的に応じて適当に選ぶ。またレスポンス関数は10行10列ないし、50行50列の行 列表示にして使われることもある。

レスポンス関数を行列表示し、列(または行)について各要素を加えた値は、その

列の対応するエネルギーの単一光子入射時の効率を与える。この値を検出器について (2-2)式より理論的に算出した効率η、と比較して、作成したレスポンス関数 (行列)の妥当性を検討することができる。両者はほとんど一致するか、その差はで きるだけ小さいことが望ましい。

 $\eta_{\,\,\,} = 1 - \frac{2}{(\mu \,\mathrm{d})^{\,\,2}} + 2 \,\mathrm{e}^{-\mu \,\mathrm{d}} \left\{ \frac{1}{(\mu \,\mathrm{d})^{\,\,2}} + \frac{1}{\mu \,\mathrm{d}} \right\} \qquad (2-2)$

(この式で、µはシンチレータの線減衰係数、dは検出器の直径である。)

また、レスポンス関数よりP/T比を算出し、実験値と比較することもできる。この場合、実験によるパルス波高分布には散乱線の寄与が入るので、実験的に求めたP/T比のほうが5%~10%程度小さくなる(付録3「レスポンス関数の計算例」参照)。

2.3 レスポンス関数の適用

いくつかの異なったエネルギーの単一エネルギー光子がいろいろな強度で混在して 観測されるパルス波高分布を解析し、それぞれの光子のエネルギーと強度を知るには、 最高エネルギー位置に認められる全(エネルギー)吸収ピークに着目し、レスポンス 関数を順々にあてはめて最高エネルギー側よりはぎとるストリッピング法(ピールオ フ法)が適用される。このとき、レスポンス関数と最高エネルギー側のピークに合わ せて次々に差引く方法、差引いた残差の二乗を最小にする最小二乗法を適用する方法、 全エネルギー吸収ピークとP/T比をもとに最高エネルギー側より差引く方法などが ある。

数種の単一エネルギー光子と散乱線が重なって観測される環境放射線のような場合 には、ストリッピング法の他に逆行列法、逐次近似法等の解析法により入射 γ 線スペ クトルが求められる。上述の逆行列法以下の方法ではレスポンス関数を行列表示した レスポンス行列が使われる。

解折結果としての入射γ線スペクトルの正確さを決めるものは、波高分布の統計誤 差や解析方法はもとより、レスポンス関数(またはレスポンス行列)と実際の測定系 の応答の適合性も問題である。

第3章 Nal (Tl) シンチレーションスペクトロメータ による計測データの処理

NaI(T1)シンチレーションスペクトロメータによって得た波高分布の処理は、特別のピークに着目するよりも、全波高分布を入射スペクトルに引き戻し、いくつかのチャ ネルをひとまとめにしたエネルギーブロックごとに扱うことが多い。

その処理内容としては計測波高分布のエネルギー補正、入射スペクトルへの変換、また その結果の具体的利用のためのいくつかの解析があげられる。解析等に使用される波高分 布は磁気テープ、フロッピーディスクなどに収録されたものであり、そのデータ量の多さ から計算機による処理が可能であるように、入・出力のインタフェース、計算プログラム を伴っていることが望ましい。

3.1 測定されたパルス波高分布のエネルギー補正

測定されたパルス波高分布は、エネルギーと波高値すなわちチャネル数が一般には 必ずしも直線関係にない。直線関係が成立している時は、この項をとばして差し支え ない。この関係が成立しないと、検出系の分解能が高くないことから、解析結果に偏 りを生じがちになる。そのために、これを補正する必要がある。このためにはチャネ ルとエネルギーとの関係を明らかにする処理、通常はチャネル当り一定のエネルギー 幅(チャネル幅)を有する波高分布に変換する処理を行う。この補正処理を行うには、 パルス波高分布のチャネルとエネルギーの関係を、スペクトル上のピークの中心チャ ネルとそれに対応するエネルギーの幾組かの点に最も近似する多項式を選び、それを 用いて変換する。多項式としては"O"点付近のエネルギー(たとえば ²⁴¹Am (59. 5k e V 、 ²⁰⁷ B i {78k e V } 、⁵⁷ C o {122.1k e V } 、または入力信号" 0"を特定のエネルギー {たとえば-17keV} とする、¹⁰K(1461keV)、トリ ウム系の^{20*}Tl 2614keV)の3点について近似した一次式(直線)が一般に用 いられる(第3.1図)(補正の具体的手順については解説5を参照)。さらに細かく 補正するためには高次の式を用いて変換を行うが、このためには必要数(n次式なら (n+1)点以上)の対応するピークエネルギーを選ぶ必要がある。エネルギー/チ ャネルの関係式を得たなら、各チャネルのエネルギー補正のための変換は容易である。 この変換後のスペクトルを浦正波高分布と呼ぶ。直線近似の場合、この波高分布のチ

ャネル幅は1チャネル当り、10、20、50k e Vなどが選ばれるが、まれに100k e Vま たは 200k e Vの例もある。この補正の不正確さは解析後の最終結果の不確かさとし て直接影響するので重要である。

3.2 入射スペクトルへの変換

入射スペクトルへの変換は、補正波高分布から入射γ線エネルギースペクトルを得 るためのデータ処理を言い、第2章のレスポンス関数を適用することによって行われ る。この場合レスポンス関数にはどのような内容が含まれているかを、あらかじめ明 らかにしておかなければならない。すなわちレスポンス関数が作られたときの条件、 現場で実際に測定したときの条件との差の検討、特に放射線の入射方向などに注意す べきである。変換手法は大別して次の2つになる。すなわちストリッピング法(ピー ルオフ法)とレスポンス行列法である

1) ストリッピング法

ストリッピング法は補正波高分布の高エネルギーチャネルに対応する単一ピーク のレスポンス関数を補正波高分布から差引き、高エネルギーチャネルの値をほぼ0 にするという操作を順次低エネルギー側に適用する手法である。このために低エネ ルギー領域の分布を決めるレスポンス関数やその際の定数の導入の仕方が処理後に 得られる入射 γ 線スペクトルの正確さに影響する。したがって、はぎとるレスポン ス関数の形と数値を明確にしておかなければならない。またその作成上の条件を示 しておくことが必要である。

ストリッピング法の一例を付録1に挙げた。

2) レスポンス行列法

レスポンス行列法は、あらかじめ特定の光子エネルギーを定め、補正波高分布に みあうレスポンス関数(エネルギー領域毎の数値行列)を作り、実測した補正波高 分布に対し各エネルギーの行列を連立方程式の解法よって解く手法で、あらかじめ 共役マトリックスを作り解く方法と逐次近似法より解く方法とがある。この方法は、 ストリッピング法と同様、レスポンス行列を作ったときの測定条件と現場での測定 条件が同一であることが望まれる。両者の条件の差が結果の不確かさの一因となる。 逐次近似法によるアンフォールディングの例を、付録2に挙げた。

以上2方法ともその適用に当たって大切なことは、用いられるレスポンス関数が 的確なことである。レスポンス関数を定めた検出体と実際に環境計測に使用する検 出体が異なる場合は、検出体の種々の差、特にシンチレータの寸法、形、重量、ケ ースなどの構造の差及び分解能の相違によって結果に差が生ずることがある。重量 の差については断面積の差として補正することができる。入射γ線のエネルギース ペクトルへの変換にあたっては、さらに高エネルギー領域から寄与してくる宇宙線 の寄与や、検出体自身に由来するバックグラウンドを考慮することが必要となるこ ともある。

3.3 結果の表現

測定結果の解析内容の表現は数多くある。すなわち、①全計数率値、②補正波高分 布についてその全計数率値、③γ線束密度(全エネルギー領域及び特定領域内)、④ 照射線量率(全エネルギー領域及び特定領域内)、⑤NaI(T1)の吸収線量率、 さらにこれらの指定された内容のグラフ表示などである。また計数値の統計誤差、精 密さ、チャネル校正に関する内容、使用関数とその精密さ、検出体の寸法構造、使用 した定数、基本定数、データ処理手法、処理プログラム、バックグラウンドの取扱い など多岐にわたる。これらのうち上記①②③④の内容、さらには④に対する②、③の 比などが代表的なものとして取り上げられることが多い。測定上の不確かさについて は参考資料1に示した。

なお、高エネルギー領域から求められる宇宙線の線東密度とその推定線量があると、 環境における放射線の様相を把握するのに有用である。この際、スペクトル中のγ線 以外の成分をどのように扱っているか明記しないと、結果の解釈上不明な点が残る。 全エネルギー領域にわたる照射線量率と光子東密度または計数率との関係が一定であ れば、光子東密度は計数率からただちに照射線量率を得ることができる。この場合に おいても入射γ線スペクトルが求められているので、各エネルギー領域ごとに照射線 量率を求めることができる。

3.4 放射性核種別線量寄与の算出

スペクトロメータによる空間 γ 線スペクトル測定法では、環境の放射性核種成分別 の線量寄与を求めることが行われる。NaI(T1)シンチレーションスペクトロメ ータでは、ゲルマニウム半導体検出器のような高分解能は期待できないため、限られ た種類の人工放射性核種(例えば¹³¹I、¹³⁷Csなど)が存在する場合に限られる。 一方通常の環境放射線場においては天然放射性物質として、カリウム、ウランおよび トリウム系列による線量寄与の分離が代表的である。

3.4.1 ピーク領域の計数値の利用

このデータ解析は、スペクトル中に存在するピーク領域と、これに該当する核種 のエネルギー、放出率、検出器の検出効率の適用によって行う。

NaI(T1)シンチレーションスペクトロメータにおいては放出ガンマ線のそ れぞれのエネルギーに対応したピークをひろい出すことは一般に容易でないため比 較的単純なガンマ線を放出する限られた数の核種の存在にのみ適用される。ピーク 領域が明確で、ピーク領域に含まれる目的核種の計数値が的確に把握できた場合に は、5.7 に準じて解析を行う。 3.4.2 マトリックス解法による核種別線量寄与の決定

シンチレーションスペクトロメータにおいては、すでにのべた理由により、数多 くのエネルギーのガンマ線を放出する核種については核種別の線量寄与の分離は容 易でない。このためあらかじめエネルギー領域を広い範囲に定め、マトリックス解 析を行うのが一般的である。特に天然放射性物質が主な成分である通常の環境放射 線の測定においてはこの方法がとられる。次にこの方法を示す。

通常、環境における天然放射性物質による線量寄与は、カリウム、ウランおよび トリウム系列によるもので、その分離が代表的であるが、ときにはこれに人工放射 性核種の寄与が加わる。

この天然の主たる三成分についての線量寄与の分離には、あらかじめそれぞれに 対応するエネルギー領域を定め、単位線量率当りの各領域に含まれる寄与(線量率、 計数率、線束密度など)を成分別に基礎資料としてととのえ、マトリックスを解く (解説3.4)。この際とられるエネルギー領域は次の範囲を標準とする。また各領 域間の線量率寄与を表すマトリックス定数の例を表3.1に示した。

カリウム領域(1.34~1.60MeV)

ウラン系列領域(1.61~2.30MeV)

トリウム系列領域(2.31~3.00MeV)

表3.1 マトリックスを解くための領域間の寄与係数(1μR/hあたりの各領 域内の照射線量率、カッコ内は3in球形シンチレータの場合のcps)

		K-40領域			1	Th系列領域					
ł	K−40	0.5	(1.5)	0	(0.0)	0	(0.	0)
l	J系列	0. 106	(0. 508	3)	0. 255	(0.56	5)	0. 024	(0.	0236))
T	h系列	0. 043	(0. 689))	0. 124	(0.67	4)	0. 275	(0.	343)

注)この係数は次の測定データに基づいている。

K-40 : 標準線源(KC1)

U系列 : ヒューストンのラドンの充満した洞穴

Th系列 : インドのケララ地方

これらの係数を用いて得られたそれぞれの値を加算したものは測定された全線量率 値に一致しなければならない。しかしマトリックス係数、計数誤差、測定環境の条件 による違いがあり、10%程度の差が生ずることがあり、これを上まわる差が生じた場 合は内容を検討する必要がある。お互いの差が10%を上まわったときには結果の採用 をひかえることが望ましい。

第4章 ゲルマニウム半導体スペクトロメータによる 空間y線計測手順

4.1 計測の概要

計測システムの構成は、図4.1で示されているように、実験室の環境試料用のゲルマ ニウム半導体スペクトロメータと基本的に同様であるが、ゲルマニウム半導体スペクト ロメータそのものを計測現場(野外等)に設置し、数十分以上環境γ線スペクトルを計 測した結果から計測地点における放射性核種に関する情報を得るものである。

計測手順のフローチャートを第4.2図に示す。

4.2 ゲルマニウム半導体スペクトロメータの具備すべき条件

ゲルマニウム半導体検出器を現地測定に用いる目的は、検出器位置での γ 線スペクト ルを計測し、放射性核種の情報等を得ることにある。このために、検出器の γ 線に対す るピーク検出効率はできるだけ大きく、短時間の計測で解析に十分な計数が得られるも のであること、環境に分布する微量の人工放射性核種を容易に検出するために、エネル ギー分解能およびピーク対コンプトン比が良いこと、また計算を簡単にするために、検 出器の γ 線入射角度依存性はできるだけ小さなことなどが望ましい。その目安として検 出器の G e 結晶の軸方向と、それと直角方向の断面積が同程度の検出器を選定するのが よい。

可搬型検出器とするために、デュワはできるだけ軽く、頑丈な構造であること。風圧 等による転倒防止なども考え、デュワを含めた放射線検出部をアルミニウム製固定台に 固定し、固定台に取手および四脚支持台取り付け用ネジを設け、移動および設置を簡単 に行えるようにするのが望ましい。

なお、移動等を簡単に行うために固定台をあまり軽くしたりすると、風等による検出 器の振動によりノイズが発生することがあるので注意する必要がある。 放射線検出部

放射線測定部

第4.1図 ゲルマニウム半導体スペクトロメータの構成

- 4.3 計測の手順
- 4.3.1 通常時の保守管理

定期的に全計測システムを使用可能状態に組上げてみる。その際、不足なケーブ ル、部品、消耗品等がないかあらかじめ作っておいた全装備のチェックシートでチ ェックし、不足なものは早急に補完するようにする。もちろん校正用線源など自然 に消耗していくものについては、初めから目安の時期を作っておいて、購入等の措 置を講じ、システムのチェックなどに不便を来たさないようにしておく。

定期的に校正用線源等による校正を行い、効率曲線を求める。また分解能を求め、 両者が経時的に異常がないかどうか確かめておく。

第4.2図 測定手順フローチャートの例

- 4.3.2 計測に先立つ準備
 - ① 校正日前に液体窒素を検出器デュアに充塡しておく。
 - ② 放射能既知の²²⁶Ra等(3.7 MBq)を用いて、それぞれのγ線エネルギーに ついてのピーク効率および分解能の変化がないかどうか、以前の記録と照らし合 わせ確認する。

d: 検出器中心から線源までの距離(cm)

第4.3図 ゲルマニウム半導体スペクトロメータの設置例

第4.4図 ゲルマニウム半導体検出器のピーク効率の例

第4.5図 ゲルマニウム半導体検出器の相対ピーク効率の角度分布(1)

第4.5図 ゲルマニウム半導体検出器の相対ピーク効率の角度分布(2)

なお、角度依存性を求めるために、上記と同様に適当な間隔でθ = 180°まで の効率を求めておく。ゲルマニウム半導体スペクトロメータ設置例を第4.3 図に 示す。また、ゲルマニウム半導体スペクトロメータのピーク検出効率および角度 分布の一例を第4.4 図、第4.5 図および第4.6 図に示す。

- ④ 分解能については^{**}Co線源を検出器エンドキャップ端より25cmの距離に置き、
 1,332 k e Vのピークの高さが10,000カウント程度になるまで計測し、半値幅を
 求める。
- ⑤ ⁵⁷Co、⁶⁰Co等を用いて3MeVのエネルギー範囲まで計測できるように、
 COARSE GAIN、FINE GAINを調整する。
- 4.3.3 現地での計測
 - ① ゲルマニウム半導体検出器を注意深く輸送容器から取り出す。
 - ② 検出器デュワに液体窒素を充塡する。計測上の安定性確保のために液体窒素は前日から入れてデュワを冷却しておくことが望ましい。
 - ③ 検出器と波高分析器についてプリアンプ電源、信号、高圧ケーブルを接続する。
 - ④ 検出器の設置高さ、方向を計測対象に応じ統一する。検出器は原則として遮蔽を 付けずに下向きにし、高さ1mに設定して計測する。
 - ⑤ 検出部、信号ケーブルおよび計測部はなるべく日陰に置き、温度によるゲイン変動を防止する。
 - ⑥ 波高分析器の電源を入れ高圧電源等を所定の値に設定する。
 - ⑦ 適切な時間(30分以上)ウオーミングアップ後、²¹² Pb(238.6k eV)、
 ¹³⁷Cs(661.6k eV)、''K(1460.7k eV)、²⁰⁸T1(2614.5k eV)等に
 より、計測すべきエネルギー範囲にゲインが調整されていることを確認する。
 - ⑧ 計測時間を設定し、プロセスメモリー内に以前のデータが残っていないことを確認後、計測を開始する。
 - ⑨ 種々の条件の記録洩れがないことの確認をする。

- 4.3.4 データの取得
 - ① 計測終了ごとに波高分析器のデータを磁気記録装置等に伝送する。

② 磁気記録装置等に入力した順番およびデータの計測時間(0または1チャネルに 表示)、⁴⁰Kのピークカウント等を記録しておく(計測時間が同一の場合、データ 処理時にスペクトルを間違えないために⁴⁰Kピークのカウント数を記録しておくと 便利である)。

第5章 ゲルマニウム半導体スペクトロメータによる 計測データの処理

5.1 処理の手順

ゲルマニウム半導体スペクトロメータによって得られた波高分布の処理は、スペク トル中に含まれる単色光子に基づく全吸収ピークに着目して行う。着目 γ 線の数が少 ない場合には手計算によっても可能であるが、現在の通常の計測システムには自動解 析処理コードが準備されており、特に環境 γ 線の計測のように天然放射性核種に起因 する核種からの γ 線が多いデータの処理には、電子計算機の利用は有効である。計算 機処理プログラムは種類が多く、その内容は多岐にわたる。スペクトル解析について はエネルギー校正の近似曲線の求め方、計数効率曲線の決定、ピーク面積の求め方等、 それぞれ独自の方法が採用されている。これらは計測結果の実例から検討するか、プ ログラムをチェックすることにより内容の把握につとめるこが望まれる。場合によっ ては解析の方法についての詳しい情報が得られないままブラックボックスとして使用 される場合がある。

したがって、計測条件、計測システムの特性の変化の予期できない原因による定量 上の誤差をさけるため、データの解析にあたってはそれぞれの計測システムについて、 定まった条件設定、同一データ処理手法を用い、検出体の試験時の条件と現地測定時 の条件を合致させて行うことが必要である。特に実験室内での定まった系における計 測と異なり、計測条件に前後違った組合せが取られがちな野外測定では、方式の規格 化と統一を心がける必要がある。計測データの処理手順が特性試験のときの手順と違 ったり、特性の変化が生じることがある。このような場合には条件の違いが評価結果 におよぼす影響の度合を事前に確認しておかなければならない。

次に標準的なピーク処理の方法を示す。計算機処理による解析を行っている場合で も試験が必要な場合の確認に使える。

第5.1図 手順のフローチャート

5.2 平滑処理(スムージング)

平滑が必要でない場合は、このステップを飛ばし次の処理に移る。

解析するパルス波高分布データが統計的にバラツキが大きくピークの確認および定 量が困難な場合にはスペクトルの平滑処理を行う。ただし、ピークの半値幅が3チャ ネル以下の場合には適用することはできない。一般にこの操作によってピークのエネ ルギー校正精度あるいはピーク面積の定量精度の向上が期待できるが、その方法に よっては見かけ上分解能を低下させることがあるため注意を要する。

平滑化は通常、ピークの半値全幅が3チャネル以上にわたる場合に、連続する5点 以上の奇数個のデータを用い、データ数に応じた最適の次数の多項式で係数を決定す る。平滑後の値は中心チャネル位置の計算値として求まる。この際、用いるデータの 点数は、全吸収ピークの半値幅(FWHM)より大きく、しかもこれに最も近くとる のがよい。また、次に示すように荷重関数を用いる平滑の方法も簡便で大きな効果が 得られる。すなわち、

 $N_{s_{1}} = k_{o} \cdot N_{i} + k_{1} (N_{i-1} + N_{i+1}) + k_{2} (N_{i-2} + N_{i+2})$

ここで、チャネル番号 i - 2、 i - 1、 i + 1、 i + 2 は i 番チャネル前後のチャ ネルを意味し、N_{i-2} ~N_{i+2} は平滑前の計数値、N_iは平滑後の計数値、k_o、k_i、 k₂ は荷重係数で、それぞれ17/35、12/35、-3/35である。

5.3 ピークの検索とピーク面積の求め方

ピークの検索にはピークの中心チャネルの決定とチャネル幅の決定とがあり、これ がエネルギーおよび γ 線強度の決定の基礎となる。

野外の一般環境での計測では、天然核種²³⁸U、²³²Th、⁴⁰Kからの多数の γ 線からなる複雑なスペクトルが示されるが、さらに核実験等のフォールアウトの¹³⁷Csからの 0.662MeV γ 線が重なって現在観測される(第5.3図参照)。これらは十分に知り尽くされた既知核種の γ 線ばかりである。一方、原子力施設周辺での平常時・異常時の計測では、上述の γ 線をバックグラウンドとして、施設起因の放射性Kr、Xe、⁴¹Ar等の希ガス、放射性ヨウ素等からの γ 線が重なる場合がある。

- (1) ピークチャネル値の決定*1)
 - i) ピークの同定・定量が既知のγ線のみを対象とする場合は目視により容易に判 断することができる。
 - ii)半値幅3チャネル以下のピーク中心の決定
 ピーク中の最も計数率の高いチャネルhを中心に上下1チャネルの計数値それ
 ぞれN_{h-1}、N_{h+1}とすると、ピーク位置Pは次式から求まる。*²⁾

$$P = h - \frac{1}{2} \left(\frac{N_{h-1} + N_{h+1}}{2 N_{h} - (N_{h-1} + N_{h+1})} \right)$$

ⅲ)半値幅3チャネル以上のピーク中心の決定

ピーク領域で相隣り合う最も高い計数値に対応する2つのチャネルをh、h'として、それぞれのチャネルにおける一次微分係数 ΔN_n (ただし、n = hまたはh')を次式より計算する。

$$\Delta N_{n} = (-2 N_{n-2} - N_{n-1} + N_{n+1} + 2 N_{n+2}) / 10$$

ここで、 ΔN_h 、 ΔN_h が共に正であれば、h、h'を1チャネル高い方に ずらし、反対に共に負であれば1チャネル低い方にずらし、再度 ΔN_h を計算 する。得られた一次微分係数 ΔN_h 、 ΔN_h よりピーク位置Pを次式より求め る。

 $P = h + \Delta N_{h} \swarrow (\Delta N_{h} - \Delta N_{h-1})$

- *1)科学技術庁放射能測定法シリーズ7、ゲルマニウム半導体検出器を用いた機器分析法(昭和54年3月)
- *2)ピークの形が正規分布から極端にずれているような場合は上式は適用で きない。

電算機利用の場合も基本的に上の場合と同様の考えで、チャネル列の微分操 作を行うから、ピークの二次式近似あるいはガウス分布近似などの過程を経て 微分を行い、微係数の値が0となるチャネルをピークチャネルとして検出する。 電算機の処理コードにより処理内容の違いがあることが考えられるので、可能 な範囲で標準的な方法との違いを検討しておく。

(2) ピーク面積の決定

ピーク面積を決める前に先ずピーク領域の境界を決定する。これを行う場合、あ らかじめ光子エネルギーとピークの分解能(便宜的な指標としてFWHMが通常用 いられる)の関係が明らかになっていなければならない。

先ず、ピークチャネルの真の計数値をn,とし、これをhチャネルの計数値n, とバックグラウンドレベルとして決めた計数値n,の差から求める。すなわち、

 $n_{P} = n_{h} - n_{c}$

ここでn、は、ピーク領域に最も近くしかもその影響を受けていないと見なせる ピークを挟む両側のチャネルの計数値から求められる。すなわち、この点より低い エネルギー側3チャネル分(N_{e1})、高エネルギー3チャネル分(N_{e2})の2つの 平均値から計算(n_e = (N_{e1}+N_{e2}) / (2×3))するかあるいは図から読み 取る。
ピークの上下の境界領域幅mは、以上の方法で求めたn。および先に求めてある 光子エネルギー対FWHMの関係からFWHMを読み取り、第5.2図により決定す る。ここで境界領域はh-m、h+mと決まる。もし、ピークが2つ以上重なるも のの場合は高・低エネルギー側ともピークをはずれた位置のチャネルを取る。

ピーク面積の算出にあたり、ピークの上、下限値の決定に際しとった方法と同じ 考えで再度ピークを挟むバックグラウンドの値を決定する。ピークに含まれるバッ クグラウンドの全計数値N_B はこの上下の値を結ぶ直線のh-mからh+mまでの 計数値を積算することにより求める。ピークの真の計数値Nはピークチャネルhを 中心としてh-mからh+mまでを積算した全計数値N,からN_B を差し引いて求 める。すなわち、N=N,-N_B。

5.4 核種の同定

決定されたγ線全吸収ピークのエネルギーを核種データベースと対照することにより核種の同定を進める。

天然核種およびフォールアウト核種などを対象として放射能レベルおよび放射線量 の算定を行う場合には第5.1表中◎印のエネルギーに着目して計算を行うとよい。

施設からの人工放射性核種を識別する必要がある場合は、放射性のクリプトン、キャノン、ヨウ素その他の核分裂生成核種を検索する。

核		γ線エネルギー		\$/\$ *	ϕ/\dot{X}				
種	α	(k e V)	γ 禄 瓜 出 几	$\frac{7/cm \cdot s}{pCi/g}$	$\frac{\gamma / cm \cdot s}{\mu R / h}$				
40 K	0	1460. 0	0. 107	0. 0363	0. 203				
226Ra	0	186. 1	0. 034	0. 00458	0. 00252				
²¹⁴ Pb + ²¹⁴ Bi	0	$\begin{array}{c} 241.9\\ 295.2\\ \odot 352.0\\ \odot 609.3\\ 666.0\\ 768.7\\ 934.8\\ \odot 1120.4\\ 1238.3\\ 1379.0\\ 1402.0\\ \end{array}$	$\left.\begin{array}{c} 0.\ 070\\ 0.\ 179\\ 0.\ 350\\ 0.\ 430\\ 0.\ 015\\ 0.\ 048\\ 0.\ 031\\ 0.\ 145\\ 0.\ 056\\ 0.\ 046\\ 0.\ 038\\ \end{array}\right\}$	$\left.\begin{array}{c} 0.\ 104\\ 0.\ 0291\\ 0.\ 0601\\ 0.\ 0942\\ 0.\ 00339\\ 0.\ 0117\\ 0.\ 00810\\ 0.\ 0421\\ 0.\ 0172\\ 0.\ 0149\\ 0.\ 0125\\ \end{array}\right\}$	0.00572 0.0160 0.0330 0.0518 0.00186 0.00643 0.00445 0.0231 0.00945 0.00819 0.00687				
		1408.0 1509.0 1764.0 1848.0 2204.0 2435.0	0. 021 0. 147 0. 021 0. 047	0. 00712 0. 0539 0. 00791 0. 0195 0. 00666	0. 00391 0. 0296 0. 00435 0. 0107 0. 00366				
	0	129. 0 209. 0 238. 6 270. 0 277. 6	0. 025 0. 041 } + 282keV 0. 065	0. 00290 0. 00580 0. 0725 0. 0102 }	0.00103 0.00206 0.0257 0.00362 }				
^{2 2 8} A c + ^{2 0 8} T 1		328. 0 338. 0 463. 0 510. 7 583. 2 727. 2 779. 0 785. 4 720. 0	<pre> 0. 172 0. 047 0. 096 0. 300 0. 079 </pre>	0. 0128 0. 00920 0. 0193 0. 0639 0. 0186	0.00773 0.00326 0.00684 0.0227 0.00660				
			0. 047 0. 290 0. 230 } 0. 3	0. 0118 0. 0755 0. 0613) 0. 167	0. 00418 0. 0268 0. 0217) 0. 0592				
¹³⁷ Cs	1	661.6	0. 846	0. 00308	0. 499				
⁶⁰ Со	1	1173. 2 1332. 5	1. 0 1. 0	0. 0081 0. 0082	0. 188 0. 191				

第5.1表 地上1mにおける γ 線放出比、 ϕ /S、 ϕ /X(HASL-258による)

*
$$\frac{1}{pC_{1}/cm}$$

5.5 光子束密度の計算

全吸収ピークから、あらかじめ得られている検出器の検出効率を用い光子束密度を 計算する。もし、光子の入射方向分布と検出効率の方向依存性が判明している場合は 次式で補正を行う。

$$N \gamma = K \cdot \int_{0}^{\pi} S(\theta) d\theta$$

ここで、

$$K = \frac{N_{net}}{\varepsilon \cdot \int_{0}^{\pi} f(\theta) \cdot S(\theta) d\theta}$$

$$\varepsilon : \ell' - 2 d\theta = \ell' \cdot (d\theta) + \ell' \cdot (d\theta) +$$

光子エネルギー	空気の質量エネ	(µR∕h)	(cm ⁻² S ⁻¹)
(M e V)	$(\mu_{en}/\rho)(cm/g)$	$(cm^{-2}s^{-1})$	$(\mu R/h)$
0. 01	4. 61	3. 058	0. 327
0. 015	1. 27	0. 6780	0. 791
0. 020	0. 511	0. 6780	1. 475
0. 030	0. 148	0. 2946	3. 395
0. 040	0. 0669	0. 1775	5. 633
0. 050	0. 0406	0. 1347	7. 425
0. 060	0. 0305	0. 1214	8. 237
0. 080	0. 0243	0. 1290	7. 753
0. 10	0. 0234	0. 1552	6. 441
0. 10	0. 0250	0. 1552	6. 441
0. 15	0. 0268	0. 2488	4. 019
0. 20	0. 0288	0. 3556	2. 812
0. 30	0. 0295	0. 5732	1. 745
0. 40	0. 0296	0. 7829	1. 277
0. 50	0. 0295	0. 9819	1. 018
0. 60	0. 0295	1. 174	0. 852
0. 80	0. 0289	1. 534	0. 652
1. 0	0. 0278	1. 844	0. 542
1.5	0. 0254	2. 528	0. 396
2.0	0. 0234	3. 105	0. 322
3.0	0. 0205	4. 080	0. 245
4.0	0. 0186	4. 936	0. 2026
5.0	0. 0174	5. 772	0. 1733
6.0	0. 0164	6. 528	0. 1532
8.0	0. 0152	8. 068	0. 1240
10.0	0. 0145	9. 620	0. 1040

第5.2表 光子束密度 (photon/(cm^{-s}))と照射線量率 ($\mu R / h$)の換算係数 ($W_{a+r} = 33.7 eV$)

5.6 放射性核種の同定にもとづく直接γ線量の決定

放射性核種の同定とそれらによる直接 γ 線線量の決定は、核種から放出される γ 線 が¹⁰Kや¹³⁷Csのように一本の場合と、U系列、Th系列など天然の放射性物質や 二本以上 γ 線を放出する放射性核種の場合では異なる。 γ 線が一本の場合はピークの 中心チャネルから求めた γ 線エネルギーから核種が決定でき、また直接線による照射 線量率 \dot{X} (μ R/h)はピーク面積から算出された線束密度 ϕ (cm⁻²s⁻¹)、 γ 線エ ネルギーE (MeV)、空気の質量エネルギー減衰係数 μ μ ρ (cm²g⁻¹)から次 式によって算出される。この際参考として、計算に使用した質量エネルギー吸収係数 の値を記載しておく。第5.2表はその例である。 $\dot{\mathbf{X}} = 66.34 \ \phi \cdot \mathbf{E} \cdot \mu_{en} / \rho$

なお、W₃, =33.85 e Vを使用するときには、上式の係数66.34の代わりに66.05 を用いる。

一方、 γ 線が複数個ある場合にはすべての γ 線について上式によって直接線による照射線量率を求めさらにそれぞれのエネルギーに対応するビルドアップ係数を乗じ加算する。しかし一般には、崩壊系列に属する代表となる γ 線エネルギーに着目し、このエネルギーピークによる直接線の線束密度 ϕ (cm⁻²s⁻¹)と、ビルドアップ係数を含め環境における分布を考慮した崩壊系列に属する全ての γ 線による照射線量率 \mathbf{X} (μ R/h)との関係を与える係数Kを定めておき、これによって算出する。

 $\dot{\mathbf{X}} = \boldsymbol{\phi} \cdot \mathbf{K}$

によって求める。

5.7 放射性核種別線量寄与の算出

ゲルマニウム半導体スペクトロメータはエネルギー分解能が良いので、特定のガン マ線エネルギーに着目して解析することができる。天然放射性核種については第5.1 表の③印のガンマ線エネルギーに着目して解析を行う。解析に際しては複数のガンマ 線のピークが利用でき、この場合にはそれぞれのピークについて有意な数値(計数値 が計数誤差の3倍を越えたピーク)をとりあげ、誤差を考慮した平均値を採用する。 人工放射性核種についてもこれに準じて行うが、散乱線を含む核種毎の線量寄与をみ つもる際には、放射性物質の環境における分布の情況を考慮することが必要となる。 このためそれぞれの核種について利用したピークのエネルギー、直接線および散乱線 を含んだ線量値を併記することを要する。

この際、係数Kは目的核種から放出される放射線の放出率をそのまま加味した形と なっておらず、また線源の分布による吸収、散乱のため幅があることに注意する必要 がある。使用した係数Kについてはこれを明記する。ビルドアップ係数については 第5.4 図に示す。散乱 γ 線の詳細については解説 4 に述べられている。

第5.2図

第5.3図 芝地の現地γ線スペクトル

-39-

第5.4図 ビルドアップ係数の例

第6章 ゲルマニウム半導体スペクトロメータを用いて得た 処理結果の表現

6.1 放射能レベルの推定

ゲルマニウム半導体スペクトロメータによる放射能レベルの推定は、ゲルマニウム 半導体スペクトロメータのもつ高エネルギー分解能の特徴から核種の同定が容易であ り、放射性核種別のレベル比較ができる特長がある。しかし、核種別の線量評価(散 乱線を含む)、さらに全体の線量決定は難しく、電離箱やNaI(T1)シンチレー ションスペクトロメータなどによる他の計測結果と比較して検討する必要がある。特 に球形NaI(T1)シンチレーションスペクトロメータとの併用は空間放射線計測 の一つの手法といえる。次にゲルマニウム半導体スペクトロメータによる核種別放射 能レベル推定の意義、手法、手順、問題点を示す。

6.1.1 核種別放射能レベル推定の意義

環境の放射線および放射性物質について、天然ならびに人工放射線に関し核種別 の内容の把握の要求が高まっている。第一は天然放射性核種と人工放射性核種(大 気圏内の核爆発実験の影響、原子力利用、予期しない放射性物質の放出など)の寄 与の分別計測。第二は天然放射性核種、特に⁴⁰K、U系列、Th系列の寄与の割合 比率について、場所の差、時間変化などの把握。さらに核種別の被曝(主として体 外被曝、時には体内被曝)線量の推定のため、核種別の放射能レベルの資料を得る など、その目的が多様化してきた。

6.1.2 推定のための手法

推定の手法としては環境に存在する放射性核種から放出される単色光子(γ線) のエネルギーを計測し、これによって核種を決定し、合わせてその強度から存在核 種の放射能レベルを知る。

6.1.3 推定の手順

推定の手順はすでに示されたとおりであるが、ゲルマニウム半導体スペクトロメ ータを用いて現地測定を行い、得られた波高分布データを第5章のように処理、解 析することにより、環境に存在する放射性核種からの直接r線強度(線束密度)を 得、核種別の放射能レベルを知る。

現地測定では、常に環境中に天然放射性核種が存在する場での計測であることに 留意し、天然放射性核種に関する種々のデータを有効に利用し計測の助けとする。

6.1.4 問題点とその解決方法

環境に存在する放射性核種から放出される γ線によって環境の放射能レベルを得 るには多くの問題がある。すなわち検出体の方向特性、環境に存在する放射性核種 の分布、存在分布に基づく放射線の入射方向分布ならびに環境物質による吸収の補 正などである。いずれについても的確な資料が必要であるが、多くの場合その内容 が把握しにくく、不明のまま複雑に組み合わさっている。

これらの問題の解決としては、ある種の条件による割り切りによらなければなら ない。現在これについては環境における放射性核種の分布に特定の条件を与えて取 り扱うことが行われている。すなわち、全方向(4 π)一様分布(水中、地中、 空間中)、無限平面上の高さ(1m)で土壌中の放射性核種が一様分布または深度 分布が指数関数的に減少、などが代表的な分布としてとられている。この場合には 数式処理ができ、それぞれ指数積分、E² 関数、E¹ 関数の適用によって γ 線束密 度と環境中の放射性核種濃度が関係づけられる。さらにこの場合は、これらから逆 に計測点の線量評価を行うことが多くをの人々によって試みられている。

しかしながら実際の分布がこの条件に適合する場合はまれで、多少の差を生ずる ことは止むを得ない。

6.2 線量評価

環境に存在する放射性核種についてそれぞれ独立に線量評価を行う一方、全成分に 関する計測場所の線量が参考として示される。存在する核種ごとの線量は主として放 射性核種からの直接 y 線を利用して求める。

しかし、特定の条件下においては基礎となる内容(計測条件、使用した定数など) を記載の上、直接線から散乱線を含む線量決定を行うことができる(解説7.1)。 この際は使用した定数、計測条件を明記する。 6.2.1 直接線による核種別線量評価

直接線による核種別線量は5.7 に示す方法の式により算出することができる。算 出結果、主要直達光子東密度の他、この際に使用した計測器の仕様(ゲルマニウム 半導体検出器の形、大きさ、検出効率、方向特性、波高分析器の機種、使用条件な ど)、計測条件(計測点、日時、計測時間、検出器設置状況など)、データの内容 (保存場所、認識内容など)、結果を導くのに使用した定数などを記録する。 このための書式を定め、内容を理解し易いものとすると良い。

6.2.2 散乱線を含む線量推定

上記直接線による線量に対する散乱線による線量の割合は、多くの資料があるわ けではないが、いくつかの例から見積もることができる。通常、直接線に対しほぼ 同量から2倍程度の寄与がみられる。この値はエネルギーの関数で、低エネルギー 領域(~0.3 MeV)で2倍、高エネルギー領域(~1.5 MeV)で同程度である。 これを利用することにより全線量の評価を行う。すなわち直接線による線量に対し て2~4の係数を定め、全線量を決定する(解説7.1参照)。

一方、スペクトル中に含まれる散乱線の連続スペクトル成分をNaI(T1)シ ンチレーションスペクトロメータにおけるスペクトル解析手法と同様の方法で解析 し、線量を求める方法がある。解説7.2、7.3にその例を示した。

6.2.3 宇宙線

NaI(T1)シンチレーションスペクトロメータにおける場合と同様3MeV 以上のエネルギースペクトル領域から宇宙線に関する情報を得ることができるが、 ゲルマニウム半導体スペクトロメータは形状が特定できないことと計数値が多くな いことから、宇宙線に関する内容は原則として特定しにくい。

第7章 基準γ線源の利用と校正

(解説4.5、参考資料1および2参照)

校正用 γ 線源には、(1) エネルギー校正用 γ 線源と(2) 照射線量率が値付けされた 基準 γ 線源とがある。エネルギー校正用 γ 線源は、 γ 線のスペクトルからパルス波高分布 のチャネルとエネルギーとの関係を決定する、いわゆるエネルギー校正に用いられる。一 方、基準 γ 線源は、基準となる照射線量率の場により、照射線量率計としてのスペクトロ メータの精度(正確さと精密さ)を確保するための、いわゆる線量率校正に用いられる。

このほか、スペクトロメータの性能の安定性を日常的に点検する目的のために用いられ るチェック用線源がある。また、γ線源の利用にはレスポンス関数の決定も含まれるが、 これについては第2章に述べられている。

7.1 エネルギー校正

一般的に、エネルギー校正は測定装置のハード面である検出体の性能とその経年変 化や、波高分析器の性能ならびに調整の適否を確認するため行うものである。

NaI(T1)シンチレーションスペクトロメータのエネルギー校正には¹³⁷Cs、 ⁵¹⁹Co、²⁰⁷Biなどエネルギースペクトルが比較的単純な γ 線源を使用する。また、 ゲルマニウム半導体スペクトロメータに対しては、²²⁶Ra、¹³³Baなど多くのエ ネルギーからなる複合 γ 線を放出する核種が利用できる。これらの校正には、一般に 市販されている小型の放射能標準線源が利用できるが、このほか、バックグラウンド スペクトル中に含まれる天然放射性核種¹⁰K(1460k e V)、²¹⁴Bi(1765k e V)、²⁰⁸T1(2614k e V)からの γ 線のピークも、エネルギー校正に有用である。

7.2 線量率校正

線量率校正は、基準γ線源から一定の距離(普通1m)における照射線量率が値付けられており、その正確さが明確であることから、この線量率を基準として測定結果と比較・検討し、測定方法やデータ処理の妥当性を確認するために行う。基準γ線には 137 Cs、 60 Co、 226 Ra、 241 Amなどがあり、所要のエネルギーに対応して適当なものを選択することができるが、環境γ線量の測定の目的には 137 Csが最も適している。なお、 226 Raのように複数のγ線を放出する核種については、実効エ

ネルギーを用いることが多い(解第5.2表参照)。

基準 γ 線源は通常、線源から1 mの距離で散乱の少ない条件における照射線量率が 値付けられているので、原則としてこれとおなじ線源距離において、かつ散乱の少な い条件で、校正を行うべきである。JIS Z4511-1987「照射線量測定器 及び照射線量率測定器の校正方法」が参考になる。必要とする照射線量率の関係でそ れ以外の距離を採用するときは、距離の逆二乗則を利用する。ただし、距離が近いと きには検出器の寸法による誤差、遠いときには散乱線の影響による誤差の発生に留意 する必要がある。また常に、半減期による減衰の補正を行う。

なお、ゲルマニウム半導体スペクトロメータによる線量率測定は、検出器に入射す る光子束密度にもとづいて計算によって行われる。したがって、放射能標準線源を用 いた検出効率の決定(方向特性を含む)を行う必要はあるが、基準γ線源を用いた線 量率校正は一般に行われない。

7.3 チェック用線源による日常点検

測定系の安定性の確認には適当な強度をもつ長寿命のγ線源を利用する。このよう な確認は定期的に行うことが望ましい。

また、線量率の変化が無視できる環境(屋内、屋外の定まった箇所)や、遮蔽体内 のバックグラウンドを特定しておき、これらの箇所において定期的に測定を行い、測 定結果を比較・検討し、有意な変化の有無を見ることも、測定系の信頼度確認の一方 法として推奨される。

測定結果に計数の統計誤差を上回る差(2ないし3σ)を生じた場合には、ハード ・ソフトの両面から測定系の点検を行うことが必要である。

なお、検出器を交換した際にも、線源を用いる校正を行い、その結果を記録してお くことが望ましい。校正の記録様式の一例を解説5に示す。

解 説

解説1 Nal(Tl)シンチレーション検出器の特性

1.1 概要

放射線検出器はシンチレータ、光電子増倍管、検出器の保護ケースより構成されて
 いる。NaI(T1)スペクトロメータにより空間γ線スペクトルを測定する場合、
 検出器の特性がエネルギースペクトルの解析および線量評価に影響を与える。ここで
 は検出器の主な特性について述べる。

1.2 シンチレータ

シンチレータは入射する放射線の種類により各種のものが用いられている。 γ 線の エネルギー分析用にはタリウムで活性化されたヨウ化ナトリウム (NaI(T1)) が最も多く利用され γ 線に対して感度が高い。しかし、湿気に対して潮解性を有する のでガラス窓 (光学窓)を付けたアルミニウム容器に密封されている。なお、このシ ンチレータは熱的、機械的な衝撃を受けると破損しやすいので、取扱いは慎重にしな ければならない。光学窓は光電子増倍管の受光面に接着し、シンチレータ内で生じた 光を転送する。

NaI(T1)の結晶とアルミニウムの容器の間には反射体(酸化マグネシウム、 酸化アルミニウムなど)が詰められている。この反射体に局部的な片寄りが生じ、検 出器の効率に影響を与えることがあるので、波高値および分解能に変化が認められた 時には調査が必要である。解第1.1図に代表的なNaI(T1)シンチレータの構造 図を示す。

解第1.1図 NaI (T1) シンチレータの構造

シンチレータは各種の形状のものが作られているが、環境放射線測定用として多く 使用されているものは球形と円柱形である。このうち球形のもの(解第1.2図)は方 向依存性が小さいので、野外環境のような全方向からのγ線を測定する場合に適して いる。

入手できるシンチレータの寸法は3in φ 球または3in φ×3in, 2in φ×2inのものが 一般的であり最も多く使用されている。また円柱形のものに対する寸法の精度につい ては、シンチレータの大きさおよびフランジの形でA~Dの4種類に分類され、それ ぞれの直径、厚さ、光学窓の厚さ等の許容誤差がJISZ4321によって決められてい る。これらの一例を解第1.3図に示した。しかし、球形のものについては、このよう な規格は設けられていない(1989年12月現在)。

シンチレータの精密さはスペクトル解析および線量算出を行う場合に、得られた結 果に片寄りを与えるものであるから、購入に際して正確な寸法および重量等のデータ を入手しておくことが望ましい。また、これらのデータが入手できない時にはラジオ グラフィー等によって調べることもできる。

1.3 光電子增倍管

光電子増倍管は光電陰極(受光部)、ダイノード、アノードより成っている。受光 部はシンチレータの直径と同じ径のものが普通であるが、シンチレータより小さい受 光部の光電子増倍管を用いる場合にはシンチレータと光電子増倍管の接合部にライト パイプを使用することもある。ダイノードの構造にはいろいろな形式のものがあり、 一般に磁場の影響を受けやすい。したがって光電子増倍管はミューメタルなどで充分 に磁気遮蔽を施す必要がある。

|.4 検出器の保護ケース

野外環境で放射線の測定を行う場合の検出器には、丈夫な保護ケースを用いている ことが多い。この保護ケースの材質は黄銅、ステンレススチールなどいろいろなもの があり、厚みも0.5~5mm程度である。このような保護ケースは検出器に対してγ線 の遮蔽になり、また散乱体にもなる。そこでγ線エネルギースペクトルの解析や線量 評価を行う場合には、これらの効果を補正しなければならない。そのため、保護ケー スの材質および厚みなどの正確な資料を入手しておく必要がある。

解第1.2図 球形NaI(T1)シンチレータ検出器(3in)の構造

A 形

B 形

D:直径127~762±0.5 H:高さ127~762±05

#ttt mm

D: 直径 88.9~127.0±10 H:高さ25.4~127.0±1.0

解第1.3図 円柱形Nal(T1)シンチレータの寸法

1.5 検出器固有のバックグラウンド

シンチレータを密封する容器の材料には普通アルミニウムが用いられている。アル ミニウムの中には微量ではあるがラジウム系列の放射性核種が含まれている。また、 シンチレータからの光を効率よく取り出すための光学窓および光電子増倍管の管壁ガ ラス材料中にも¹⁰Kが含まれている。これらからの放射線は固有のバックグラウンド としてパルス波高分布に寄与する。

1,6 温度特性

NaI(T1)シンチレータおよび光電子増倍管等の電子回路部品には温度依存性 をもつものが多い。野外環境は温度の変化の著しいので、野外で環境γ線スペクトル を測定する場合には、できるだけ温度依存性の小さいものを用いることが望ましい。

1.7 エネルギー分解能

エネルギー分解能にはシンチレータの固有の分解能以外に光電子増倍管などの影響 も含まれる。そこで、これらを総合したものは、総合分解能として示される。エネル ギー分解能は、個々のスペクトロメータで異っており、γ線エネルギースペクトルの 解析手法によっては、これが線量評価の結果に影響を与えるので、正確な値を知って おかなければならない。また、この値は経時的に変化することがあるので定期的に測 定をすることが望ましい。一般に用いられている3in ϕ × 3inのN a I (T1) シンチ レーションスペクトロメータのエネルギー分解能は¹³⁷ C s の γ線で7~8%程度で ある。

1.8 検出器のゲインドリフト

シンチレーション検出器のゲインは高圧電源の出力電圧の変動、温度変化その他の 影響で数%から10%近くまで変動する。野外で環境のγ線エネルギースペクトルなど を測定する場合、測定を長時間かけて行うため、できるだけドリフトの少ない装置を 選ぶように心掛けることが望ましい。

解説2 ゲルマニウム半導体検出器の特性

ゲルマニウム半導体検出器(Ge(Li)または、高純度Ge検出器と前置増幅器を含 む系)の特性として、①25cm相対効率、②エネルギー分解能、③P/T比、④ピークの形 の非対称、などの他にデュワおよび入射窓厚を示すことが多い。

以下には、これらについて定義と数値を示す。

2.1 25cm相対効率

**Coの点状線源から25cmの距離に、Ge検出器と3in ϕ ×3inNaI(TI)検出 器をそれぞれ置いて γ 線を計測し、1332keVの光子に対する全吸収ピーク計数率を 比較することによって決定する。

この値は、有効容積60~120cmの検出器でほぼ10~20%である。環境における計測 ではこの値の大きいことのほか、方向特性のよいことが望ましい。

2.2 エネルギー分解能

半値幅(FWHM(keV)と略記することが多い)および 1/10 幅(FWTM (keV))と略記することが多い)は次図のように定義する。標準的な検出器では FWTM≤2FWHMなる関係がある。

FWHM; ピークの高さの1/2 における全幅

FWTM:ピークの高さの1/10における全幅

FWHMの標準的な値は2keV前後、FWTMは4keV前後である。

2.3 ピーク対コンプトン比

**Coの1332keV光子に対して、ピークの高さn^pと、コンプトン連続分布のうち1040~1096keVの領域の平均値ncの比をいう。

大体の目安は25~40である。この値は有効容積の大きな検出器程大きくなる。

2.4 ピークの形の非対称性

ピークの形の非対称性はデータ処理の際に重要となる。

この値は次図に示すように定義される。

前もってポールゼロキャンセルなど回路の調整を十分行い、さらに線源とGe検出 器の間および周辺で生ずる散乱線をできるだけ減らすよう留意すれば、この値の大体 の目安はFWTMにおいて10%以下である(なお非対称性をb/a で表すこともある。)。

デュワ:液体チッ素の日消費量の目安は1~2ℓ/dayである。

入 射 窓 厚: 0.5~1mmのアルミニウム窓の他に約1mmのテフロン、約0.5mmのn 層などが加わる(使用する検出器の構造を購入時に十分調べておくこ とが重要である)。

解説3 レスポンス関数の作成

3.1 レスポンス関数の意味

検出器からの出力波高分布を観測し、検出器へ入射した放射線(本マニュアルでは 光子を対象としている)のエネルギースペクトルを求めるアンフォールディングでは、 単一エネルギー放射線に対する検出器の応答の形(レスポンス関数)に関する知識が 必要である。このレスポンス関数がいかに検出器の応答に適合しているかが解析結果 に大きく影響する。

入射光子のスペクトルをN(E)(Eはエネルギー)で表し、波高hとh+ Δ hの間 に観測されるパルスの数をP(h) Δ hとすると、レスポンス関数をK(E.h)、 検出器の検出効率を ϵ (E)として、次式

$$P(h) \Delta h = \Delta h \int_{0}^{E} \varepsilon (E) K (E, h) N (E) dE \qquad (\text{#3-1})$$

が成立する。

単一エネルギー光子の場合N(E)はデルタ関数と見なされる。このとき ϵ (E)は定数となるから、上式は

となり、波高分布をε(E)で割ったものがレスポンス関数となる。

 ∞

また(解3-1)式で ϵ (E)K(E, h)をまとめてR(E, h)と表現すれば、 入射光子のスペクトルN(E)に対する波高分布P(h)は次式のように表現される。

P (h)
$$\Delta$$
 h = Δ h ∫ \bigcap_{0}^{∞} R (E, h) N (E) dE (解3-4)

R(E, h)はEのエネルギーをもった入射光子が検出器中で波高hのパルスを生ずる確率である。

単一エネルギーの光子を測定して得られる波高分布を検出器へ入射した線束密度で 割れば、単位線束密度の単一エネルギー光子が検出器へ入射したときの波高分布が得 られ、これがR(E, h)を表すので後者レスポンス関数の意味が理解しやすい。 (解3-1)式のK(E, h)はそれぞれ異なる光子エネルギーEについて波高分布 の面積がすべて1となるような分布を表している。

レスポンス関数は線源と検出器の配置、検出器の形状に固有のものである。比較的 よく使われているレスポンス関数またはレスポンス行列の例を解第3.1表に示す。こ の表に示したものの他にも多くのレスポンス関数が作成されている。また特定の線源 と検出器の配置におけるレスポンス関数の実験的決定と、それを基礎にして任意のエ ネルギーのレスポンス関数を補間する方法が Heath¹¹により集大成されている。

3.2 レスポンス関数の作成

レスポンス関数は検出系と線源の配置に固有のものである。レスポンス関数を決定 するには主に①実験的に決定する方法と②モンテカルロシミュレーションによる方法 ³⁾がある。前者は前節でもふれたように Heathにより代表される方法である。後者の 方法では実際に使用される装置や幾何学的配置などによる付加的な条件も考慮に入れ なければならないが、このような手続きは煩雑であるので、裸の検出器に光子が入射 したという条件でシミュレーションを行うことが多い。

(1) 実験的作成法

この方法は、種々の単ーエネルギーの光子に対する検出器の出力波高分布を求め ることから始まる。この方法の長所は、使用する検出系固有の諸条件による波高分 布への寄与、例えば前方散乱線や後方散乱線などをすべてレスポンス関数の中に含 めることができることである。遮蔽体を含む検出系全体を常に同じ条件に保ってお けば、これらを一つの検出器と見なすことができる。また、自然環境における光子 スペクトルの評価のためには、ブロードな入射ビームの条件で、単一エネルギー光 子による波高分布群を測定する。レスポンス関数の作成によく使われる単一エネル ギー光子の光子線源には解第5.1 表に示したようなものがある。これらの線源につ いてすべて測定する必要はない。測定にあたっては散乱線の放出ができるだけ少な い構造の線源を使用する必要がある。

解第3.1表 Nal(Tl)検出器のレスポンス関数、レスポンス行列

	製作者または	/ F.1 M/-	条件(エネルギー範囲、					
形状	使用战関	₹ <u>7</u> • 94 €Χ	bin幅、対象など)					
	(i) Heath	_	0.335 ~2.75MeV:任意エネルギー のレスポンス関数を補問	(a)				
	(ji) Zerby- Moran		0.679 ~6WeV; 任意波高分布を Monte Carlo 計算	(b)				
(a) $3in\phi \times 3in$	(iii) Berger- Seltzer		2~20WeV: WeVごとの波高分布を Wonte Carlo 計算	(c)				
• 円柱ル	(iv) 京大工	20 × 20	0~1.44MeV:72keV/bin,均等分割; 透過スペクトル研究用	(d)				
	(v) 名工試	22 × 22	0~2.61 MeV;単色エネルギーピー ク幅による不均等分割;自然環境	(e)				
	(vi)名大工	46 × 46	//I 0 ~ 9.2 WeV;200 keV/bin, 均等分割; 原子炉周辺環境用	(1)				
	(i) 唑 研	10keV 問隔、連続	0 ~3.0MeV;10keV/bin, 均等分割 BG(固有のバックグラウンド、 宇宙線分布差引き); 自然環境用	(8)				
(b)	(ii)原研	60 × 60 295 × 295	0.05~3MeV;50keV又は10keV/bin, 均等分割;自然環境用	(h)				
3110	(iii)京大炉	34 × 34	0 ~0.1MeV;20keV/bin.0.1~3MeV 100keV/bin; 自然環境用	(i)				
	(iv)名工試	22 × 22	0~2.614WeV;単色エネルギーピ ーク幅による不均等分割;自然環 境用	(i)				
	(v)名大工	22 × 22	0.01~3MeV;対数波高軸を均等分 割;自然環境用	ŝ				
(c) 21n ¢ × 2in	(i)日 立	14×14	0 ~1.4Wev;100kcV/bin,均等分割; 逆行列; 散乱線研究用	(1)				
円柱形	(ji)原研	60 × 60	0.05~3MeV;50keV/bin. 均等分割	(m)				

吞考文献

- (a) R.L. llcath : 100-16880-1 (1964)
- (b) C. D. Zerby and II. S. Moran ; ORNL-3169 (1961)
- (c) M. J. Berger and S. M. Seltzer; Nuclear Instr. Neth., <u>104</u>, 317 (1972)
- (d) T. Hyodo and F. Makino ; Memoi, Fac. Engin., Kyolo Univ., 14, 291 (1962)
- (e) 凑進;名工試報告, <u>27</u>, 384 (1978)
- (f) Y. Kakashima ; Thesis, Fac. Engin., Nagoya Univ., (1980)
- (8) M. Okano : Natural Radiation EnvironmentIII, Symposium Series D0F51 (CONF-780422) 867 (1980)
- (h) S. Moriuchi ; Personal Communication
- (i) I. Urahe, T. Tsujimoto, K. Yamazaki and K. Katsurayama ; Jour. Rad. Res., 19, 163 (1978)
- (j) S. Minato; Personal Communication
- (k) 明野吉成: 卒業論文;名大工、原子核工学科、Mar. (1982)
- (1) 石松健二;日本原子力学会誌、4,24 (1962)
- (m) S. Moriuchi ; Personal Communication

こうして得られた単一エネルギーの光子に対する波高分布群を、検出器の効率を 考慮して入射光子数に対して規格化する。すなわち測定で得られた波高分布群をす べて面積が1となるように規格化したのち、それぞれの波高分布にそれぞれの入射 光子のエネルギーを考慮して効率 ϵ (E) = 1 - exp {- μ (E) T } をかける。 ここで μ (E) はエネルギーEの光子に対する検出体の線減衰係数、T は検出体中 の光子の平均通過距離である。任意のエネルギーの入射光子に対するレスポンス関 数は、さきに求めた単一エネルギー光子に対する波高分布群よりグラフ的補間によ って求めることができる。

Heath¹⁾ はグラフ的補間法を発展させ、計算機でこれを行うプログラムを作って いるので、以下にその原理を紹介する。同一条件の下で測定した単一エネルギー光 子に対する波高分布群を三次元的に配置し、それらを滑らかな曲面で覆うとレスポ ンス曲面となる。

このようにして得られたレスポンス曲面の全エネルギー吸収ピークを次のガウス 分布の式で内挿する。

$$y = y_{o} \exp \left\{ - \frac{(X - X_{o})}{b_{o}} \right\}$$
 (#23-5)

この式で y 。はガウス分布のピークの高さ、b 。は半値幅に関係した量で入射光子 のエネルギーE γの関数として実験的に決定することができる。次にコンプトン効 果による波高分布について、コンプトン終端のエネルギー、すなわちコンプトン 効果による最大エネルギーを次の式から求める。

$$E_{-} = E \gamma - E \gamma / \left\{ 1 + \frac{2 E \gamma}{m_0 c^2} \right\}$$
 (\mathcal{H}^2 - 6)

さらに後方散乱によるピークE。、電子対生成反応による消滅光子のシングルエ スケープピークEps、ダブルエスケープピークEpoのエネルギーを決定する。

$$E_{b} = E \gamma \swarrow \left\{ 1 + \frac{2 E \gamma}{m_{0} c^{2}} \right\}$$
 (Af 3 - 7)

$$E_{PS} = E \gamma - 0.511 (M e V)$$
 (#3 - 8)

-59-

E_c、E_b、E_{Ps}およびE_{PD}の位置によって波高分布をL₁,L₂,…L₅の5区間に分割する(解第3.1図参照)。当然のことながら、E₇ < 1.02M e VのときはL₁,L₂、
 L₃の3区間に分割すればよい(解第3.2図参照)。それぞれの区間で次の多項式によって波高分布を表現する。

すなわちL₁区間の波高分布g(X)は

$$g(X) = a + b X + \sum_{K=1}^{N} b_{K} \sin \frac{k \pi X}{M-1}$$
 (#23-10)

と表せる。Xはパルスの波高値である。この式でMは区間内のデータ点数、N は展開の項数で普通M/2程度となる。測定した単一エネルギー光子の波高分布全体について上式を用いて適合させる。係数a, b, b, について各分割区間L, ごとに E γ に関して補間を行う。こうして得られた a, b, b, とさきに得たb, y, を用いれば、任意のE γ の入射光子の検出器に対する波高分布を式(解3-4)および(解3-10)より計算することができる。

これらの波高分布群を行列表示するには、任意のエネルギーE」に対するレスポン ス行列のi, j要素R」を次式により決定する。

3 in×3 in Nal (T1) 検出器の応答 (1.02Me以下の場合)

$$R_{i,j} = \int \frac{X_1}{X_{i-1}} R(X, E) dX$$
 (#3-11)

レスポンス行列の行および列の数は光子スペクトルの形や、適用する分析法、デー タ処理能力などによって適当な数に選ぶ。連続スペクトルを解析する場合には多く の行、列の数は必要でないが、多数の単一エネルギー光子群より成るスペクトルが 予想される場合には行、列の数を多くとる必要がある。

(2) モンテカルロシミュレーション^{2),3)}

光子が検出器へ入射したとき、検出体との相互作用により二次電子が発生する。 二次電子はそのエネルギーを検出体中で消費する。光子と検出体との主な相互作用 は光電効果、コンプトン効果、電子対生成の作用によるものである。モンテカルロ シミュレーションでは、乱数を使用して、入射した1個の光子の検出体内での履歴 (ヒストリー)を追跡する。光子が衝突を起すごとに二次電子が発生し、二次電子 は電離・励起によりエネルギーを失うが、入射光子のエネルギーが数MeV以下の 場合には、検出体内で発生する二次電子の飛程は短いので、二次電子のエネルギー はすべて検出体内で吸収されるものとして取扱うことが多い。しかし、光子エネル ギーが高いときには、二次電子の追跡が必要になる。散乱した光子は再び追跡され、 検出体内部ですべてのエネルギーを失うか、あるいはあるカットオフエネルギー以 下になるか、または検出体外へ逸出するまで追跡される。

発生する二次電子のエネルギーが大きい場合には、モンテカルロシミュレーションのプログラムは光子を追跡するルーティンと二次電子を追跡するルーティンの2つのサブプログラムを含むより複雑なものとなる。

モンテカルロシミュレーションでレスポンス関数を決定する場合の簡単なシミュレーションの大略(電子を追跡しない場合)を解第3.3 図に示した。

まず入力データとして検出器の形状(半径、長さ)、密度、エネルギーの区分、 レスポンス行列の行および列の数、検出器の分解能、各相互作用による減衰吸収係 数の値、電子の追跡が必要な場合はそれらに関する定数、ヒストリー数などを与え る。個々の過程は確率的であるから、各過程の追跡には乱数(たいていの場合("0"、"1")なる一様乱数)が使われる。光子の初期条件として、検出器に対 して入射する位置と入射方向を決める。次にこの光子が相互作用を起すまでに検出 体中を進行する距離と相互作用点の座標を決定する。そのとき相互作用点が検出体 の外部であれば、初めに戻って次の光子の追跡を始める。相互作用点が検出体の内 部であれば、その相互作用が光電効果、コンプトン効果、および電子対生成のいず れであるかを決定する。相互作用として光電効果が生じたときには光子の全エネル ギーは検出体内で吸収されたものとして、その量を記録するエネルギー区分を決め、 次の光子の追跡へ移る。コンプトン効果が生じた場合、散乱光子のエネルギーと散 乱方向を決定する。このとき元の光子のエネルギーと散乱光子のエネルギーの差を 吸収エネルギーとする。散乱光子は初めと同様にさらにシンチレータ内での進行距 離と次の相互作用点の座標の決定へと追跡を繰返して、カットオフエネルギー以下 となるか検出器の外へ逸出するまで追跡される。

解第3.3図 モンテカルロシミュレーション法による

レスポンス関数作成のフローチャート

(簡略化されている)

このとき、カットオフエネルギーとなるまでに二次電子に与えたエネルギー、または検出体へ逸出するまでに二次電子に与えたエネルギーを加え合せ、相当するエネルギー区分に記録する。電子対生成が生じた場合、元の光子のエネルギーと1.022 Me Vの差を吸収エネルギーとし、相互作用位置で、0.511 Me Vの光子が2 個 180 ° 方向に発生したものとして、それぞれの光子を別々に追跡し、検出体内で吸収されるエネルギーを加え合せ、相当するエネルギー区分に記録する。

以上の過程で1個の光子につき検出体内で吸収されるエネルギーを決定し、検出

体のエネルギー分解能を考慮して、この吸収エネルギーが初めに入力データとして 与えたエネルギー区分のどのbin に入るかを決定し記録する。以上述べた過程を初 めに与えたエネルギー区分の数のそれぞれについて、ヒストリーの数だけ繰返せば、 レスポンス関数が決定される。

3.3 レスポンス関数作成上の諸問題

検出器と線源を固定した配置でレスポンス関数を実験的に作成する場合と異なり、 環境放射線を測定する際には、いろいろな方向からの放射線の寄与があるので、レス ポンス関数の作成にあたって考慮すべき事項が多い。

モンテカルロシミュレーションに際しては、検出系のレスポンス関数に影響すると 考えられる①検出器のアルミニウムケースとMgO反射材による吸収・散乱、②シン チレータ窓およびライトガイドによる散乱、③光電子増倍管の光電面による散乱、④ ヨウ素のKX線のエスケープ、⑤方向依存性、⑥波高分解能、⑦検出器の効率、⑧ピ ーク対コンプトン比などをすべて含むようなプログラムを作成することは大変なこと である。また、これらの他に発光量と二次電子エネルギーの間の非直線性なども考慮 すべき因子として存在する。次に内容のあらましを示す。

①には入射1次光子束の減衰と散乱線によるビルドアップが寄与する。すなわち、 単一エネルギーの光子の場合、1次光子束は exp {- µ'(E) d} にしたがって減衰 するが、そのうちの何%かは散乱線として検出体へ入射する。ここでµ'(E) は吸収 体(ケース等)の線減衰係数、可は吸収体中の光子の平均通過距離である。従って正 確なエネルギースペクトルを評価するためには、一次光子束の減衰だけでなく、この ような散乱線の寄与もレスポンス関数に含めることが必要である。②は検出体中での 発光の出口に存在する数mmのガラス等の影響である。一次光子が検出体の前方から 入射したとき、検出体を透過した光子がこの部分で後方散乱して再び検出体で吸収さ れる割合が問題となる。単一エネルギー光子を測定したとき、180keV付近に観 測されるピークはこのような散乱線の寄与である。③の寄与は、②の部分を透過した 光子がさらに光電子増倍管の光電面で後方散乱した成分の検出体による再吸収である。 この成分の寄与は②よりも小さいと考えられる。④の寄与は検出体の構造と関係し、 検出体のごく表面で相互作用が起った場合、すなわち低エネルギー光子に対して重要 となる。⑥、⑧は検出体のみならず測定系を含む全体の系の特性が関与する。 ①~⑤の寄与はモンテカルロシミュレーションのプログラムに組込むか³⁾、実験に もとづく解析的方法で補正するより他に正確に評価する方法はない。前者の場合、検 出体の構造上、部分的にアルミニウム板の重なりや反射材の不均一さがあるので単純 化された境界条件を設定せざるを得ない。後者の場合、低エネルギー光子ほどこれら の寄与は無視できないと考えられるので、単一低エネルギー線源が必要となる。ケー スによる散乱線の寄与は、一般にケースが薄いので、1回散乱線を考慮すれば充分と 考えられる。方向依存性はケースの構造に関係して、特に低エネルギー領域で顕著に 現われる。以上を要約すれば、裸の検出体について作成されたレスポンス行列Rに、 吸収散乱の寄与を表わす行列Ms および方向依存性を補正するための行列Dを乗じて レスポンス行列を修正し、実際の系に近い形Rm を求めることができる。

 $R_m = D \times M_S \times R$

(解3-12)

しかし、①から⑤の補正を行わなくても、得られる結果は数%の誤差にとどまる。

⑥~⑧についての補正は、裸の検出体で作成されたレスポンス関数(行列)を実際 の系に適合させる場合、あるいはすでに発表されたレスポンス関数を利用して実際に 使用する検出系に適合させる場合に重要である。分解能を補正するには、コンプトン 効果による分布は連続分布であるから、全吸収ピークの部分のみを、ピーク対コンプ トン比を考慮して、使用する系の分解能に適合させれば充分である。このようにして 補正されたレスポンス関数(行列)はその面積(要素)を各入射光子エネルギーごと に総計したものは全効率となるはずであるから、検出体の減衰係数を用いて理 論的に得られる全効率 $\epsilon(E) = 1 - \exp\{-\mu(E) \overline{\ell}\}$ と比較して細部を再 修正することもできる。

裸の3in Ø N a I (T 1)検出器についてモンテカルロシミュレーションにより求 めたレスポンス関数(行列)に、MgO反射材およびA1ケースの影響を平板近似に より計算で補正した22行22列、不均等分割のレスポンス関数(行列)の例を解第3.2 表に示した。各エネルギーに対するヒストリー数は50,000である。また各要素の数値 を 1,000で割れば単一エネルギー単一光子入射に対する応答となる。

E E E	0.1	0.2	0.3	0.4	0.5	0.6	0.7	, U.8	0.9	1.0	1.1	1.2	1.32	1.405	1.615	1.765	1.970	2.205	2.410	2.615	2.860	3.100
0.1	979.7	U.0																				
0.2	27.0	916.6	0.7																			
0.3	71.7	17.3	759.6	1.6	0.0																	
0.4	80.8	66.4	15.6	593.6	10.1	0.0																
0.5	92.1	73.7	58 . 1	17.8	473.4	13.8	0.0															
0.6	83.3	73.0	66.7	51.5	20.6	381.8	17.8	0.0														
υ.7	73 5	66.4	60.7	59.2	45.8	22.6	318.8	17.8	0.0													
0.8	63.4	60.5	\$5.7	55.0	56.6	40.6	23.0	270.0	21.5	0.0												
0.9	54.6	52.4	49.1	48.2	47.8	52.6	34.6	20.5	234.8	23.2	0.0											
1.0	46.0	44.7	44.3	42.5	41.0	44.3	49.3	32.7	27.0	210.3	25.0											
171	42.5	40.3	37.3	38.6	37.7	38.6	39.9	48.9	31.1	27.4	188.1	24.6	0.0									
1.2	36.8	34.0	33.8	34.0	34.2	34.4	34.9	38-2	48.0	28.7	28.5	168.2	26.1	0.0								
1.32	31.8	30.4	29.2	28-3	29.4	29.2	28.5	30.2	35.3	43.0	35.1	17.3	180.9	8.11	0.0							
1.465	26.8	27.8	25.0	23.9	24.8	24.3	24.3	25.2	26.5	30.3	38.4	11.9	24.3	169.7	10.5	0.0						
1.615	22.4	21.3	21.9	21.3	21.2	24.6	20.6	22.6	22.1	23.5	29.4	33.5	58.1	27.0	152.4	11.8	U .0					
1.765	18 4	18.4	18.4	18.4	18.4	18.4	21.3	21.7	18.6	19.7	20.0	25.7	44.7	57.7	29 8	143.6	12.7	0.0.				
1.970	15.1	15.1	15.1	15.1	15.1	15.1	15.1	15.1	18.2	19.2	16.4	17.5	26.3	43.9	53.7	34.0	157.2	1.5	0.0			
2.205	11.8	11.8	11.8	11.8	11.8	11.8	11.8	11.8	11.8	11.8	14.9	21.7	22.1	24.6	33.5	47.8	72.4	140.0	5.3	0.0		
2.410	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	y.y	9.9	9. 9	21.7	27.0	21.1	26.8	84.6	50.0	126.5	8.6	0.0	
2.615	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.1	8.11	15.6	31.6	21.5	50.4	70.3	46.7	122.4	7.0	0.0
2.860	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.2	9.2	11.8	16.0	23.0	45.8	37.7	68.0	53.3	131.6	2.6
3.100	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	7.2	8.8	9.2	9.4	35.3	20.9	32.5	70.4	73.0	105.0

解第3.2表 一様入射 γ 線場に対する 3 in ϕ N a I (T 1) シンチレータの 2 2 × 2 2 のレスポンス行列の一列

参考文献

1) R.L. Heath ; IDO-16880-1 (1964),

" "; IDO-17017 (1965),

Heathの日本語資料としては

天道芳彦:γ線スペクトルの解析法

; Radioisotopes Vol. 12, No. 2, 200~205(1963)

ニコラス ツルファニデス(坂井英次訳): 放射線計測の論理と演習(下巻・ 応用編第11,12章); 現代工学社(1986)

R. L. Heath, R. G. Helmer, L. A. Schmittroth and G. A. Cazier Method for Generation Single Gamma-Ray Shapes for the Analysis of Spectra, Nucl. Instr. Meth. 47:281~304(1967)

2) C.D.Zerby ; "Methods in Computational Physics" I. 89~134

(B. Alder and S. Fernbach eds.) Academic Press (1963).

3) 斉藤公明、森内茂; JAERI-M9741 (1981)

解説4 実効エネルギーと散乱γ線

4.1 実効エネルギー

実効エネルギー(第7章および解5.2表参照)について以下に説明を述べる。

複数または連続的なエネルギー分布を持つ放射線により、物質に生じる効果を考え る場合、同一の効果を持つ放射線の単一エネルギーを考えることができる。このエネ ルギーが、効果を対象とした実効エネルギーである。

現在、環境γ線の測定は空気吸収線量で行われている。したがって、複数エネルギーのX、γ線の場合、空気吸収線量についての実効エネルギーをとることが合理的である。

次式により、空気の等価質量減衰係数(μ m/ρ) m を定義する。

$$\left(\frac{\mu_{en}}{\rho}\right)_{eff} = \frac{\sum_{E} E \phi_{E} \left(\frac{\mu_{en}}{\rho}\right)_{E}}{\sum_{E} E \phi_{E}}$$
(A44-1)

ここで、

E : 光子エネルギー

φ_E: : エネルギーEの光子束密度

 $(\mu_{en}/\rho)_{E}$:エネルギーEの光子に対する空気の質量減衰係数

この(µ m/p) m に対応するエネルギーがこの場合の実効エネルギーである。 光子が単一エネルギーのときは、実効エネルギーはそのエネルギーである。

しかし、上記の実効エネルギーを求めるのは容易でないので、半価層に対する実効 エネルギーがとられることが多い。これは、照射線量が½となるフィルタ厚、すなわ ち半価層を測定し、同一半価層を持つ単一エネルギーの光子のエネルギーを実効エネ ルギーとするやり方である。

測定器の校正等を行う際に実効エネルギーを用いることは、フィルタの材質、測定 の条件等によって変化はあるものの実用的といえる。

¹³³ B a や²²⁶ R a γ線の実効エネルギーについては、二、三の数値が報告されているが、解第5.2表には代表的とみられる数値をとった。

4.2 基準γ線源と校正における散乱γ線の寄与

基準 γ 線源は、一般に線源から 1 mの点における照射線量率が値付けされている。 値付けは γ 線の散乱の少ない状況のもとで実施されるので、この線量率は線源から直 接の γ 線に対してであり、周囲からの散乱 γ 線による寄与はほとんど含まれていない (ただし、線源部分からの散乱によるものは含まれる)。

実際に基準 γ 線源で測定機器を校正する場合、散乱を最小にすることはできないの で、線量率 \dot{X} は直接線による線量率 \dot{X} 。と周囲からの散乱 γ 線による線量率 X_{3} との 和になる。すなわち、

 $\dot{\mathbf{X}} = \dot{\mathbf{X}}_{\circ} + \dot{\mathbf{X}}_{\circ}$

したがって、校正の場合、散乱 γ 線の寄与 $\dot{\mathbf{X}}_s$ / $\dot{\mathbf{X}}_o$ を評価しておくことが望ましい。 もし、 $\dot{\mathbf{X}}_s$ / $\dot{\mathbf{X}}_o$ が十分小さければ無視してよいであろうし、大きければ補正が必要 となってくる。

しかしながら、校正に際して散乱γ線の寄与を測定するのは容易ではない。そこで、 散乱γ線寄与についてのデータが報告されているので、それらを利用し、評価するの が実際的である。しかし、それらの種々のデータは特定の条件におけるものであり、 一方、実際の条件は千差万別なので、できるだけ実際の条件に近いデータを用いて散 乱γ線寄与を評価するようにする。

解第4.1~3図に散乱γ線寄与についてのデータの例を示す。解第4.1図は Chilton等の半実験式および実測によるものであって、⁶°Co線源の場合、たとえば 線源・検出器間距離が1m、それら高さが1.5mであると、実測値から、散乱γ線寄 与は裸地でもコンクリートでも概略3%程度となる。

解第4.2 図は壁が近傍にある場合である。また、コンクリート製キュービクルの上 に設置されている検出器を校正するような場合の散乱γ線寄与の実測値の一例を解第 4.1 表に示す。

校正条件の多様さからいえば、散乱γ線寄与に関するデータはいまだ不十分で、これからもデータを蓄積していかなければならないが、⁵⁰Co、¹³⁷Cs、²²⁶Ra線源については解第4.2図等を参照して、散乱γ線寄与を評価するのが妥当といえよう。

もっとも、線源・検出器間距離が1m、それら高さが1.5mの場合、 60 Co、 137 Cs、 226 Raに対し、散乱 γ 線寄与は2~4%であり、データの不確さを考慮すれば3%と評
価しておいてまず問題ないと言えよう。

解第4.3図は、線源・検出器間距離の関数として表した、散乱線寄与率についての 他のデータである。

解第4.1図 散乱γ線に関する Chilton等の半実験的結果(曲線)と測定結果

解第4.2図 軽量ブロック壁がある場合の散乱線寄与

核種	+: +:	A	局	В	局
	万压	垂直(%)	水平(%)	垂直(%)	水平(%)
	b	2.3	2. 5	2. 3	3. 5
°°Co	С	2.3	2. 7	2. 4	3. 6
	d	1.7	3. 2	3. 5	4.7
R a	С	2. 2		2. 2	4. 2
	b	2. 9	3. 5	3. 8	5. 2
¹³⁷ Cs	с	2.6	3. 4	3.5	6. 7
	d	2.3	3. 3	5. 6	39. 2
¹³³ Ba		[·] 3. 8		5. 7	7.6
	а	3. 5	3. 8	8. 3	9. 8
57Co	b	4.8	5. 1	6. 9	11
	С	1.1	2. 3		19
	а	0.6	0. 5	2. 8	3. 5
241 A m	b	36			2. 8
	С			11	5.7

解第4.1表 検出器をキュービクル上に設置したときの散乱γ線の割合

1) 散乱 γ線の割合は直接線に対する照射線量の百分率である。

- 2) A局は高さ2.3m、広さ1.6m×1.6m
 B局は高さ2.3m、広さ4.5m×3.4m
- 3) 線源・検出器間距離は1m
- 4) 方法
 - a. スペクトル測定法、G(E) 関数部分計算
 - b. スペクトル測定法、G(E) 関数全範囲計算
 - c. シャドーシールド法
 - d. 3in Ø 球形NaI(T1)検出器を用いた
 レスポンスマトリックス法

 解第4.3図 各核種からのγ線についての検出器・線源間距離に対する散乱γ線の寄与
 (床面積4×5 m、天井高さ2.5 mのコンクリート建屋、測定器は電離箱・ シャドーシールド法により測定)

4.3 環境の散乱y線

地中の放射性核種による環境γ線の場は、地中での多重散乱によるγ線を多く含み、 計測器の校正に用いる散乱線の少ない場とは異なるものである。このような散乱線の 多い場におけるγ線のエネルギースペクトル、直接線に対する散乱線の割合等の特性 を調べるには、いわゆるモンテカルロ法を用いて計算を行う例が多い。ここでは、無 限平面の均質の地面を仮定し、点線源が地中Zcmの深さにある場合の、地上1mにお ける無限平面での直接線および散乱線について、空気との相互作用を無視して計算し た。なお、地中深さ方向の線源強度分布は一定とし、各点線源から4 π方向に合計一 万個のγ線を打ち出した。この結果は次のとおりである。なお、土壌の密度は1.6 g /cm²である。

解第4.4 図は1 Me V線源の深さと、散乱線のエネルギースペクトルとの関係を示 すものでチャネル幅は50 k e Vである。 250 k e V以下の散乱線が非常に強く現れて いるが、これは数~十数回の多重散乱を土中で起こした部分で、線源が表層にある場 合は後方散乱によるもの、深部線源の場合は前方散乱によるものが主である。γ線エ ネルギーが50 k e V以下になると光電効果の断面積が急激に大きくなり、光電吸収に より散乱線が消滅してしまうので、50 k e V以下の散乱線はほとんど現れず、したが って 150 k e V付近にピークを示すことになる。線源位置が深くなるに従い、このピ ークは低エネルギー側(ほぼ 8 0 k e V)にシフトしている。なお、実際には空気に よるスカイシャイン等の散乱が加わるので、低エネルギー散乱線が増大し、ピークは さらに低エネルギー側にシフトすることになる。

解第4.5図は1MeVおよび0.5MeV線源による、照射線量に換算した直接線と 散乱線とによる線量率の線源深さ依存性 $\dot{X}_{D}(z)$, $\dot{X}_{S}(z)$ を示すものである。 地上で観測される散乱線と直接線の照射線量率の比(\dot{X}_{S} / \dot{X}_{D})は次式で与えられ る。

直接線は線源の深さとともに指数関数で減少するのに対し、散乱線はゆるやかにし か低減せず、1 M e V線源の場合、50cm以上の深さまで影響を及ぼすようである。こ の条件における計算結果では、散乱線による線量率は、1 M e V および 0.5 M e V γ 線の場合、直接線に対しおのおの 0.9 および 1.2 倍であった。

解第4.6 図はゲルマニウム半導体検出器の全吸収ピークに影響を及ぼす微小角散乱 線の線源深さ依存性を示すもので、直接線より5keV低いエネルギー範囲〔(E₀-5) \leq E < E₀, E₀: 直接線のエネルギー(keV単位)〕の散乱線の、規格化され たフルエンス(散乱線の目盛は 100倍に拡大)を表す。この場合の散乱線の直接線に 対する割合は、1MeVおよび0.5MeV γ 線でおのおの0.7 および1.4%であった。

ゲルマニウム半導体検出器系のエネルギー分解能(FWHM)は一般に、1MeV および0.5MeV γ 線に対しおのおの2keVおよび1.5keV以内であるので、全 吸収ピークに及ぼす微小角散乱線の寄与は、上記 γ 線に対し、0.3~0.4%以内であ ろう。

このように微小角散乱線の割合が小さいのは、開き角 θ 方向の微分散乱断面積* d σ は、d $\rho = (d \rho / d \Omega \theta) \cdot 2 \pi \sin \theta d \theta$ であるので、 θ が小さい範囲では d σ は θ に比例し。散乱角が小さくなると微小角散乱線の発生の確率が減少するため である。

なお、地中での γ 線の打ち出し角度と、地上の直接線、散乱線の数との関係を解第 4.7 図に示す。打ち出し角0°は、地中の線源からみて Z 軸の地上方向にとってある。 検出器に入射する直接線強度の角度分布は、この打ち出し角に対するものと合致する。 線源強度の深さ方向分布が均一の場合、直接線の平均の入射角は1 M e V γ 線の場合 50°弱である。人工放射性核種のように地表面の線源強度が強い場合には、平均入射 角は大きくなり、この方向から入射する直接線が強いことになる。これは検出器から 地中の体積線源を見込む立体角内の線源の面積と、土層による減衰を考慮した実効的 な線源強度との積が、この角度で最も大きくなるためである。

散乱線に関しては、打ち出し角と検出器入射角とは当然合致せず、種々の角度で地 上に放出される。線源位置が浅い程後方散乱線が地上に出て行く割合が大きいことが 示されている。

以上1MeVのγ線源について主に示したが、この他のエネルギーのγ線源に関し ても定性的な特性は同様である。 * 自由電子によるコンプトン微分散乱断面積を(dσκN/dΩ)とおくと、束縛電子による 散乱断面積(dσ/dΩ)は、(dσ/dΩ)=(dσκN/dΩ)・S(V)とおかれる。ここにS(V)は電 子が束縛されていることによる自由電子モデルの補正項である。散乱体の原子番号を Z、光子エネルギーをEo MeV とおくと、V=178.4 Z^{-2/S}・Eosin(θ/2)であり、 V=1以上ではS(V)=1、またV が1より小さく0に近づくとS(V)も急速に0に近づき、 散乱断面積(dσ/dΩ)が小さくなる。土の平均の原子番号を8.2とおくと、V が1に なる散乱角θはEoが1および0.5Mevに対しおのおの0.65度および1.3度であり、散 乱線のエネルギーE(V=1)に換算すると、E(V=1)=Eo-0.13keVとなる。つまり、1000keV の直接線に対し、999.87keV 以上のエネルギーをもつ散乱線の発生確率は非常に小さ いことになる。¹⁾

参考文献

1) N B S Circular 542(1953)

'Graphs of the Compton Enevgy-Angle Relationship and Klein-Nishina Formula from 10keV to 500MeVj

E いおよびN いは線源から放出された光子のエネルギーおよび数である。

-08-

解第4.6図 直接線および微小角散乱線の線源深さ依存性

(深さ1cmにおける直接線のフルエンスを1とした。)

-81-

1 M e V 光子の打出し角度〔度〕

解第4.7図 地中の線源からのγ線打ち出し角度と、地上における直接線および散乱線の数 計算条件は解第4.4図とおなじである。

解説5 基準γ線源の利用と校正

5.1 利用一般

放射線計測器の試験や校正に用いられる基準 γ 線源には、計測に必要な範囲の γ 線 エネルギーと、十分長い半減期とをもつ核種が選ばれている。環境レベルに用いられ る基準 γ 線源には照射線量率が値付けされたものと、放射能が値付けされたものとが ある。前者は電離箱、TLDのような照射線量計測器の校正に用いられ、比較的丈夫 なカプセルに収納され、線源から1mの距離における照射線量率(C/(kg・h)ま たはR/h)が値付けされており、線量率基準 γ 線源と呼ばれている。

後者は、半導体検出器の効率決定等に用いられる。放出 γ 線のエネルギーが正確に 求められているものを、通常、エネルギー校正線源と呼び、さらに半減期、 γ 線放出 率が正確に求められ窓材による減衰を小さくし、その放射能(BqまたはCi)が値 付けされたものを放射能標準線源と呼んでいる。

スペクトロメータに使用される検出器の主要な特性の試験と校正には次のような項 目がある。

 エネルギー校正:入射γ線エネルギーと全吸収ピーク位置(波高分析器のチャ ネル番号)との対応づけ。

② 検出効率の校正:着目するγ線エネルギー範囲のピーク検出効率曲線の作成。

③ 方向特性試験 : r線の入射方向による検出効率の変化の割合の決定。

①項の校正には γ線エネルギーが明確であることが必要である。線源の核種が確定していれば、放出 γ線のエネルギーが明確であることからエネルギー校正線源として使用することができる。この場合、フルエンスの絶対値は確定していなくてよく、したがって線源の放射能が確定していなくても差し支えない。②項の校正の場合、 γ線エネルギーとフルエンスが明確であることが必要である。したがって、線源の核種と共に放射能が確定していることが必要となる。フルエンスは放射能から算定できる。 ②項の校正には核種と放射能が確定している放射能標準線源が用いられる。もちろん、放射能標準線源をエネルギー校正にも適用することができる。

③項の試験では、線源と検出器との間の距離を一定に保てば、基準入射軸の検出効率で規格化された相対値を求めれば十分であり、このような場合には放射能の正確な 値付けは不要なので、取扱いの容易なチェッキング用線源が利用される。このように 相対値のみでよい試験項目としては、検出効率の距離依存性試験、ピーク位置の安定 性(温度依存性)試験等がある。

5.2 Nal (Tl) シンチレーションスペクトロメータのエネルギー校正

5.2.1 概要

パルス波高スペクトルのエネルギー校正には、通常適当な2種類以上の既知エネ ルギーのγ線の全吸収ピークを通る直線が使われる(2測定点校正)。しかし、よく 知られているとおりNaI(T1)結晶の発光効率は電子エネルギーに多少依存す るため、全吸収ピークチャネルとγ線エネルギーの直線は完全な直線関係にはなら ない。このため校正の方法によっては非常に大きな誤差を伴うことがある。用いる チェッキング線源と校正誤差の関係を幾つかの例について下に示す。

5.2.2 使用する線源と校正誤差の関係

パルス波高分布の全吸収ピークにはNaI(T1)結晶の中で起こる光電効果の 全吸収によるものに加えて2回以上の散乱の結果全吸収を起こしたものも含まれる ため、全吸収ピークに関係した発光効率はその γ 線エネルギー相当の電子の発光効 率とは一般に等しくない。全吸収ピークを形成する光電吸収分と多重散乱分の割合 が異なれば実効的な発光効率も変化するので、厳密にはNaI(T1)結晶の大き さによっても違いが生じることになるが、ここではこの問題を無視し、資料として Heath¹⁹が3in ϕ ×3inNaI(T1)結晶について実験的に得た結果を用い てエネルギー校正誤差を計算してみた。ここで波高分析器は完全な直線性があるも のとの仮定を置いた。

標準 γ 線エネルギーには自然 γ 線のうちで卓越したピークを示す¹⁰Kの1.460 MeV、^{20*}T1の 2.614MeVの他、エネルギー校正によく用いられる¹³⁷Csの 0.662 MeVの3種を用い、それぞれの3例の組み合せを選んで比較した。

解第5.1図にそれぞれ2点校正における、実際のγ線エネルギーと校正エネルギーの関係を示した。いずれの場合も低エネルギー側で実際のエネルギーよりかなり 小さく評価する結果を示している。

一方、波高分布の波高"0"の点を γ 線エネルギーで-10k e V-20k e V相 当とする方法で同様の比較計算を試みた。この場合のエネルギー校正曲線は、波高 "0"が-10k e V~-20k e V相当の点を必ず通り、高エネルギー側で1点あ るいはそれ以上のエネルギー点を最小二乗近似で通る一次曲線となる。ここでは校 正エネルギーとして 0.662M e V、1.460M e V、2.614M e Vの中の1種、"0" 波高のエネルギー (E_0)として-17k e Vの組み合せで計算した。この結果を解第 5.2 図に示すが、低エネルギー側での校正誤差が大幅に改善されている。

以上のように使用する校正線源によって誤差の分布が大きく変化するので、測定 対象の y 線のエネルギー分布に適した校正線源で校正を実施する必要がある。

5.2.3 エネルギー校正の実際例

解第5.2図に示したいくつかの計算例の中で、(2)の(-17k e V、1460k e V) の2点による校正結果が、広いエネルギー範囲にわたって平均的に良い結果を示し ている。任意のγ線エネルギーにより、これと同等の校正を行う方法について以下 に2つの例を示す。

(1) 2 点あるいはこれ以上で行うエネルギー校正

2点のエネルギー校正で解第5.2図の(2)と同じ校正結果を得るには、 γ 線エネル ギーE₁、E₂それぞれに図から読み取れる誤差分を加算したものを校正の γ 線エ ネルギーとしてあてる。すなわちE₁での誤差が+1.0%であれば、計算に用いる γ 線エネルギーはE₁×1.01となる。この修正ファクターをそれぞれF₁、F₂と すれば、校正の一次式は次のとおりとなる。

 $E = \frac{(E_{2} \times F_{2} - E_{1} \times F_{1})}{(CH_{2} - CH_{1})} \times CH - E_{0} \dots (\beta F_{5} - 1)$

ここで、

CH₁: γ線エネルギーE₁の全吸収ピークのチャネル(bin)番号
 CH₂: " E₂ "

CH : 任意のγ線エネルギーEに対応するチャネル(bin)番号

E, :チャネル(bin)番号"0"に対応するエネルギー

γ線エネルギーが3点以上におよぶ場合は最小二乗法により傾斜を決定する。
(2) "0"点を固定して行うエネルギー校正

まず、パルス波形を実際の放射線パルスの波形に近似させたパルスジェネレータ を用い、パルス波高値とチャネル(bin)番号の対応曲線(波高分析器が正常な らば、直線となる)から入力信号"0"のチャネル(bin)番号CH。を補間で 求める。この点をエネルギー−17keVの位置として座標を(CH。−17keV) とする。

校正 γ 線のエネルギーを E 2、(1)の場合と同様に修正ファクタを F 2とすると、 校正の一次式は次式のとおりとなる。

 $E = \frac{(E_2 \times F_2 + 17)}{(CH_2 - CH_0)} \times CH - 17 \quad \dots \quad (\nexists 25 - 2)$

ここで、CH。:入力信号"0"に対応するチャネル(bin)番号、γ線エネ ルギーが2点以上におよぶ場合は最小二乗法により傾斜を決定する。

なお、計算に使用した Heathの実験による発光効率に関する資料¹)を解第5.3 図 に挙げた。

参考資料

1) R. L. Heath ; I D O - 16880 - 1 (1964)

-87-

校正エネルギー(1点)

γ線エネルギー (MeV)

解第5.2図 1 測定点および-17k e V 点を用いた エネルギー校正における校正誤差

解第5.3図 3 i n × 3 i n φ / N a I (T 1) シンチレーション検出器のパルス 波高/γ線エネルギー比(0.662M e Vの値を基準にした)

5.3 Nal(Tl)シンチレーションスペクトロメータのレスポンス関数の作成

NaI(T1)シンチレーションスペクトロメータによるエネルギースペクトル 測定の場合、レスポンス関数を決定しなければならない。このレスポンス関数は、 単一エネルギーのγ線を放射する放射能標準線源によって求めることができる。放 射能が確定されていることから検出器へ入射するγ線の粒子束密度が求められる。 レスポンス関数の求め方については第2章を参照されたい。

解第5.1表にレスポンス関数の作成に用いられる核種とγ線エネルギーを示す。

			12 1 10	/
核種	エネルギー(MeV)	柞	亥種	エネルギー(MeV)
	· · ·			
\bigcirc ²⁴¹ Ar	n 0. 060	0	⁸⁵ S r	• 0. 513
^{129m} T e	e 0.109		^{9 I m} Y	0. 555
O 57 C c	0. 122	0	¹³⁷ Cs	0. 662
17 S d	c 0. 155		95N t	0. 764
¹³⁹ C e	e 0. 166	0	⁵⁴Mr	n 0. 835
97Rι	u 0. 213		9 ² N t	0. 930
¹³⁵ X 6	e 0. 250		* 6 R b	1. 080
$\bigcirc 203$ H §	g 0. 279	0	⁶⁵ Zr	n 1. 114
O 51 C 1	r 0. 320		1 A r	1. 290
. 115m I I	n 0. 335		4 ² K	1.510
¹⁹⁵ Au	0. 411		²⁶ A 1	1.780
7 B e	e 0. 478		2 1 N a	1. 369, 2. 754

解第5.1表 レスポンス関数の作成に使える核種とγ線エネルギー (○はよく使われる核種)

5.4 線量率基準γ線源

一定線量率の γ 線を検出器に照射し、スペクトルから求めた線量率と比較すること によって、スペクトロメータの信頼度を確認することができる。

線源から一定の距離における照射線量率が値付けされた γ 線源を線量率基準 γ 線源 という。照射線量に対しては国家標準が設定されており、線量率基準 γ 線源について は国家標準とのトレーサビリティが明確である。線量率は周囲からの散乱寄与を除い た線源からの直接 γ 線に対して値付けされている。

解第5.2表に、現在入手可能な線量率基準γ線源を示す。

線量率は直接の γ線に対して値付けられており、使用のとき周囲からの散乱 γ線の 寄与を考慮することが必要である。線量率は 1 mの点について値付けされているが、 1 m以外の点については距離逆二乗法則と空気中での減衰、周囲からの散乱寄与を考 慮して求めることができる。解第4.1 図に地表で使用した場合の散乱線寄与の 1 例を 示す。

核種	半減期	崩壊形式	主なァ線エネルキー(keV)と放出率(%)	実効エネルキー
57.0 0	971 65 51	EC	122.06 (85.6)	120koV
			136. 47 (11. 1)	IZUKEV
⁶⁰ C o	5 979年	β ⁻	1173.21 (100)	1250koV
0	0.2124	β	1332. 47 (100)	1230464
¹³³ Ba	10.66年	E C	79. 63 (2. 8) 302. 85 (18. 2) 81. 00 (34. 3) 356. 01 (62. 1) 276 60 (7 1) 383 85 (9 0)	300keV
¹³⁷ Cs	30.17年	β-	661.65(85.0) ^{1 3 7} B a γ 線	660keV
²²6R a	1599年	α	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	830keV
² 4 ' A m	432.02年	α	59. 54 (35. 8)	60keV

解第5.2表 線量率基準γ線源に用いられる核種の特性

(参考文献)

C. M. Lederer and V. S Shirley (ed.): Table of Isotopes 7th ed. J. Wiley & Sons Inc. New York. *** Raの実効エネルギーについては、ANSI N323-1978.

線量率基準γ線源は密封線源で、線量率値付けの精度は核種および放射能によって 異なるが、10~15%とされている。

5.5 ゲルマニウム半導体スペクトロメータの校正と基準線源

5.5.1 エネルギー校正

ゲルマニウム半導体検出器のパルス波高のエネルギー校正は、エネルギー校正用 または放射能標準線源を用い、通常2種類以上のγ線を利用し、全吸収ピークに対 応するチャネル番号とγ線エネルギーとの直線関係を用いて行われる。この直線関 係が良好なことは、G e 結晶内での電子-正孔対生成エネルギーが、γ線により発 生する二次電子の運動エネルギーに依存せず一定であるためで、全吸収ピーク位置 (小数点を含むチャネル番号)を正確に決定すると、0.1%程度の精度でエネルギ -校正を行うことが可能である。 γ 線エネルギーをE、これに対応する全吸収ピーク位置をN_E とおくと、増幅器 ゲイン、波形整形時間等AD変換されるまでの条件を一定に設定した場合、 α 、 β を定数として次式が成立する。

 $\mathbf{E} = \alpha + \beta \,\mathbf{N}_{\varepsilon} \quad \dots \quad (\mathbf{F} \, 5 - 1)$

エネルギー校正を行うということは、(解5-1)式の α 、 β の値を求めること にほかならない。二種類の γ 線エネルギーE₁、E₂を用いたエネルギー校正では、 これらに対応する全吸収ピーク位置をN₁、N₂とおくと、 $\beta = (E_2 - E_1) /$ (N₂ - N₁)、 $\alpha = E_1 - \beta$ N₁ (i = 1 または2)により求められる。通常は 数点の γ 線エネルギーを用い、直線回帰でフィットさせ、 α 、 β の係数を求める。 高精度で校正を行うには、全吸収ピーク位置を正確に求めることが不可欠で、ピー ク位置近辺のバックグラウンド計数を補正したピーク波形から、その中心位置を決 定する¹¹。なお、エネルギー校正用線源の放出 γ 線エネルギーは5桁以上、正確に 求められている。

5.5.2 検出効率の校正

γ線エネルギーの全吸収ピークの検出効率(ピーク効率)は、個々の検出器の形 状によって異なり、また線源と検出器との間の距離、γ線のビームの大きさ、およ び入射方向に依存する。一般には、検出器のγ線入射窓方向25cmの位置に点線源を 設定し、ゲルマニウム結晶全体を照射する条件で試験される。しかし、環境γ線の 計測では線源と検出器との距離が離れているので、放射能標準線源と検出器との距 離は 0.5~1m程度として校正することが望ましい。

エネルギーEの γ 線のピーク検出 ε_{E} は次式で定義されている。

 $\varepsilon_{\rm E} = ---- (\Re 5 - 2)$

- ただし、 **n** ε は有効計数時間 (ライブタイム) 内に検出器に入射するエネル ギーEのγ線の総数。
 - A_{E} は γ 線の総数 n_{E} 対応する全吸収ピークの計数でバックグラウン ド計数の補正を行った値(ピーク面積)。

 γ 線の総数n_Eは、Ge結晶の有効面積をSerr、有効計数時間をterrとおくと、 n_E = ϕ_E ・ terr ・ Serr ………………………(解5-3)

-92-

である。ただし、S . . . は結晶の有効体積をV . . . 、有効厚さをT . . . とおいて、

 $S_{eff} = V_{eff} / T_{eff}$ で表わされる。

 ϕ_{ε} は放射能標準線源の値付けされた放射能を θ_{\circ} 〔Bq〕、エネルギーEの γ 線の放出割合を η_{ε} とおいて、

 $\phi_{\rm E} = \theta_{\rm 0} \cdot \eta_{\rm E} \cdot \frac{1}{4 \pi {\rm L}^2} \cdot f \gamma \cdot f_{\rm at} \quad \dots \quad ({\rm f} {\rm g} 5 - 4)$

で与えられる。ここにLは線源と検出器との距離、f γ は半減期による放射能の補 正係数、f 」は線源カプセル等による γ 線の減衰補正係数である。

検出効率 $\varepsilon_{\rm E}$ と γ 線エネルギー E との関係は効率曲線と呼ばれ、種々の実験式が 用いられている。^{2),3)} これらの実験式の一例を示す。

 $\varepsilon_{E} = k \left(1 - e x p \left(-\tau_{E} \cdot T_{eff} \right) + \alpha \sigma_{E} \cdot e x p \left(-\beta \cdot E \right) \right)$ (解5-5)

ここで、 T_{err} は結晶の有効厚さ、 τ_{E} 、 σ_{E} はそれぞれGeの光電吸収および コンプトン吸収の減衰係数を示し、k、 α 、 β の各定数は実験と適合するよう定め る。

5.5.3 エネルギー校正線源および放射能標準

G e 半導体検出器のエネルギーおよび検出効率の校正に使用される、エネルギー 校正線源および放射能標準線源が、(出日本アイソトープ協会から供給されている。

放射能標準線源は、アクリルまたはジュラルミンカプセルを用い。 γ 線出射窓は 光子減衰補正の誤差を小さくするため、軟 γ 線用では一般 0.1 mm B e 、その他の γ 線用では 0.1 mm A 1 が用いられ、放射能は 4 × 10³ ~ 1 × 10⁶ B q の範囲である。

放射能の値付けの精度は $\pm 5\%$ (3σ レベル)以内、一般には $3\sim 4\%$ の精度である。

この他、 γ 線エネルギーのチェック用または、サーベイメータ等のチェック用と して、取扱いが容易で丈夫な密封線源も利用されている。

(出日本アイソトープ協会から供給されている放射能標準線源の核種一覧を解第5.3 表に示す。

環境レベルの照射線量率計の校正用としては、²⁴ Am、⁵⁷Co、¹³³Ba、 ¹³⁷Cs、²²⁶ Raおよび⁶⁰Coの6核種が線量率基準(標準)γ線源があり、精 度5~15%程度(放射能、核種で異なる)で、散乱線を含まない直接線のみによる、 線源から1mの距離における照射線量率が値付けされている。なお、データブック 等に与えられている照射線量率定数等は目安を与える数値で、カプセルの材質、厚 さ、カプセル材からの散乱線等によって影響を受けるので、使用するさいには注意 を要する。

(参考文献)

1) JIS Z 4520 (1979)

「ゲルマニウム・ガンマ線検出器の試験方法」

- 2) T. Paradellis and S. Hontzeas, Nucl. Instr. and Meth. 7 3, 211(1966) [A Semi-empirical Efficiency Equation for Ge(Li) Detectors]
- 3) 放射線データブック、p. 363、地人書館(昭和57年)

解第5.3表 放射能標準(エネルギー校正)γ線源

	K		半波	期	壊変形式	r線エネルギー(keV) と放出率(%)
	Na-22		2.62	年	β·,EC	511A*1(181) 1274.52(99.95)
	Cr 51		27.72	Ē	EC	320.03(10.2)
	Mn - 54		312.5	B	EC	834.83(100)
	Fe-55		2.6	年	EC	5.9 MnX-rays
ŵ	60-56		77.3	Β	β', EC	511A (40) 846.75 (100) 977.46 (1.44) 1037.83 (14.0) 117
	, [I	1238.28(67.6)1360.22(4.33)1771.49(15.7)2015.36(
	1 7		•			2034.92(7.89)2598.58(16.9)3010.2(1.0)3202.3(3.0
						3253.6(7.41)3273.25(1.75)
	0.57		270	<u> </u>	EC	14.41(9.7)122.06(85.2)136.47(11.1)
	Co 53		11.3		Br,EC	5114 (30) 810.76 (99)
	<u>re-59</u>		<u>44.b</u>	片	β	192.2(2.8)1099.22(56.5)1291.56(43.2)
			5.20	- <u>म</u> -	P: FC	1173.21 (99.92) 1332.48 (100)
	20-00		100		p,ec	$\frac{5114(3.4)1115.52(50.75)}{52(50.75)}$
	- 26-12		120	0	CL	(1, 202) $(2, 1013)$ $(3, 1013)$ $(3, 208)$ $(21, 11)$ $(10, 15)$ $(30, 0)$ $(50, 2)$
	5- 45		64 03	17		$\frac{(1.322)204.05(57.28)2(9.53(24.16)303.9(1.323)40}{514.0(59.4)}$
\$	<u>v .88</u>		106 6	- #-	A · FC	309,0(00)1260(2)1926,1(100)
~	$R_{11} = 100$	5	367	- <u>H</u>	<i>P</i> , 20	$511 80^{*2}(20 5)621 80(6 76)1050 10(1 45)$
~	(Rh 10	Š)	(29.9	H;)		
	Cd - 10	<u>,</u>	453	B	EC. 17	88.03D (3.65) Ap X rays
	(Ag-10	9m)	(39.6	秒)		
	Ag-11)m	253	B	β - , IT	446.78(3,1)620.24(2,5)657.74(93,8)677.56(11,8)6
	(Ag 11)))	(24.4	秒)		706.67(15.9)744.25(4.1)763.93(21.8)818.02(7.1)8
						(74.7) 937.48 (33.2) 1384.22 (26.3) 1475.75 (4.4) 1504
					·	1562.3(1.28)
	Sb-123	2	2.73	年	β^{-} , IT	176.4(7.1)380.5(1.53)427.9(30.4)463.4(10.7)600.1
	(<u>le-12</u>	(n)	(58	<u> 日</u>)		<u>606.7(5.1)635.9(11.5)671.4(1.8)35.5D(7)109.3D(3</u>
	Ba 13.	\$	10.9	平	EC	53.2(1.95)79.6(3.04)81.0(36)276.3(7.5)302.7(19.1
	Ca 12		2 000	<u></u>		(67)383.7(9.4)
	05 104	•	2.002		μ	4/5.3(1.5)563.1(8)569.2(14)604.6(98)/95.8(88)80.
	Ce. 13	;	20 17/	13F	9 -	1030.4(1.1)1107.7(1.9)1300.0(3.4)
	(Pa = 13)		(2 55	42	μ	001.040(00.1)
-	Ce-139		$\frac{137.2}{137.2}$	H	FC	165 8 (80)
3	Ce-144		284.2	Ē	B	80.12(1.54)133.53(10.8)696.40(1.5)
	(Pr - 144	D	(17.3	分)	·	
	Eu-152	2	13.2	军	B-, B.	121.78(25,4)244.66(6,8)344.31(24,5)411.13(2,0)44
:					EC	778.87 (12.0) 867.33 (3.8) 964.01 (13.2) 1085.83 (9.7) 1
1						(1.7)1112.04(12.4)1212.94(1.3)1299.20(1.6)1408.0
,	Bi 207		30.2	年	EC	569.6(98)1063.4(77)1769.7(9)
	Am 241	.	433	年	α	59.54 (35.9)
					·	

Ref. Atomic Data and Nuclear Data Tables(Volume 13. Nos. 2-3, February 1

Table of Isotopes(7th Edition)等による

* 1 A : Annihilation radiation

*2 D:娘核種から放出される y 線

☆ 原液の入手が困難で期日がかかることがある。

解説6 環境放射能レベル推定に使われる式

環境に分布する放射性核種から放出される光子は直接線(1次線、単一エネルギーをも つ)と散乱線(連続スペクトルをもつ)に分けられる。Ge(Li)または高純度Ge半 導体検出器を用い、直接線についてそのエネルギーを確定し、核種を同定することができ る。一方、環境中での放射性核種の分布を仮定すれば、着目する点を単位時間に通過する (着目するエネルギーの)直接線の線束密度を算定することができる。したがってGe

(Li)または高純度Ge半導体検出器を使用して環境で計測した波高スペクトル中の着 目エネルギー(E)のピークについて、検出器の検出効率、方向特性などを補正して、 線束密度N_p, ($cm^{-2} s^{-1}$)を求めれば、これは環境中の放射性核種の濃度Co(Bq/ cmなど)に対応した量となっている。

以下に、環境中の放射性核種の濃度分布を①無限体積中に一様分布、②無限平面上に一様分布、③半無限体積中に指数分布、および④半無限体積中に一様分布、とした代表的な場合について、環境中の放射性核種濃度Coと環境中の着目する点P(②、③および④では地表面上h(cm))での直接線の線束密度N。」を対応付ける関係式を示す。

使用する記号

- n, :放射性核種1壊変あたり放出されるエネルギーE,の光子の数 (photons/dis)
- μ_{i} :エネルギーE,の光子に対する媒質の全滅衰係数(cm⁻¹)

μ_s: エネルギーE, の光子に対する土壌の全減衰係数(cm⁻)

μ₃: エネルギーE, の光子に対する空気の全減衰係数(cm⁻¹)

h : 地表面から着目する点までの高さ(cm)

なお、その他使用する記号はそれぞれの場合の付図にて示す。

Co: 環境中に分布する放射性核種の濃度(①および④では<math>Bq/cm又はBq/g、②および③ではBq/cm

6.1 無限体積中の一様分布

解第6.1図のような配置でP点における直接線の線束密度は次式のように表現で

d V = 4 π r² d r 解第6.1図 無限体積中に一様分布 これを積分して

$$N_{p,j} = \frac{n_j}{\mu_j} \cdot C_o (cm^{-2} \cdot s^{-1}) \cdots (km^{-2} \cdot s^{-1})$$

6.2 無限平面上一樣分布

解題 6.2 図のような配置で空気中の P 点における直接線の線東密度は次式のよう に表現できる。

解第6.2 図 無限平面に一様分布

これを積分して
N_{p.} =
$$\frac{n_o}{2}$$
 ・ E₁(μ_a , h)・C_o (cm⁻²・s⁻¹) ……(解6-2)

解第6.3 図のような配置を考え、線 源の分布を

S(z)=S exp(-az)So= Con;) とする。Coは地表面のごく近傍での単位体積中の放射性核種の濃度である。

 α は深度分布の様子を示す定数である(一様分布のとき $\alpha = 0$ 、表面分布のとき $\alpha = \infty$ となる)。

解第6.3図 半無限体積中に指数分布

P点でのエネルギーE,の光子の線束密度は次式のように表現できる。

$$N_{P,i} = \int_{0}^{\pi/2} \int_{h-sec}^{\infty} \frac{S_{o}}{4\pi r^{2}} \exp(-\alpha z) \exp(-\mu_{si} \sec\theta - \mu_{si} h \sec\theta) dv$$

$$= \frac{S_{o}}{2} \int_{0}^{\pi/2} \int_{0}^{\infty} \exp\{-(\alpha + \mu_{si} \sec\theta)z\} \exp(-\mu_{si} h \sec\theta) \tan\theta dzd\theta$$

$$= \frac{S_{o}}{2} \int_{0}^{\pi/2} \frac{1}{\alpha + \mu_{si} \sec\theta} \exp(-\mu_{si} h \sec\theta) \tan\theta d\theta$$

ここで $y = \mu_{a,h}$ sec θ とおいて上式を変形すると

$$N_{p,j} = -\frac{S_{o}}{2} \int_{\mu_{j},h}^{\infty} \frac{1}{\alpha + \frac{\mu_{s,j} y}{\mu_{a,j}h}} \cdot \frac{e^{-y}}{y} dy$$

簡単のため $q = \mu_{si} \ge \mu_{ai}h$ 、 $x = \mu_{ai}h$ とおくと

$$N_{p_{n-1}} = -\frac{S_{n}}{2\alpha} \int_{x}^{\infty} \left\{ \frac{1}{y} - \frac{1}{\alpha/q + y} \right\} e^{-y} dy$$

$$N_{p_{n-1}} = -\frac{S_{n}}{2\alpha} \left\{ E_{1}(\mu_{n-1}h) + \exp(\alpha \mu_{n-1}h/\mu_{n-1}) \cdot E_{1}(-\mu_{n-1}h(1 + \frac{\alpha}{\mu_{n-1}})) \right\}$$

$$N_{p_{n-1}} = -\frac{n_{n-1}}{2\alpha} \left\{ \exp(\alpha \mu_{n-1}h/\mu_{n-1}) \cdot E_{1}(\mu_{n-1}h(1 + \frac{\alpha}{\mu_{n-1}})) - E_{1}(\mu_{n-1}h(1 + \frac{\alpha}{\mu_{n-1}}) - E_{1}(\mu_{n-1}h(1 + \frac{\alpha}{\mu_{n-1}})) - E_{1}(\mu_{n-1}h(1 + \frac{\alpha}{\mu_{n-1}})) - E_{1}(\mu_{n-1}h(1 + \frac{\alpha}{\mu_{n-1}}) - E_{1}(\mu_{n-1}h(1 + \frac{\alpha}{\mu_{n-1}})$$

6.4 半無限体積中に一様分布

この場合には、(解6-3)式で $\alpha = 0$ とおき、計算を進めればよい。

$$N_{p,j} = \int_{0}^{\pi/2} \int_{h \sec \theta}^{\infty} \frac{S_{o}}{4\pi r^{2}} \exp(-\mu_{s,z} \sec \theta) \exp(-\mu_{s,j} h \sec \theta) dv$$

$$N_{p, j} = \frac{n_{j}}{2 \mu_{sj}} \cdot \{\mu_{aj}h E_{l}(-\mu_{aj}h) + \exp(-\mu_{aj}h)\} Comm(\beta F 6 - 5)$$

hが小さい時には空気による減衰の項は無視できる。このとき式(解6-5)は

$$N_{p,j} = \frac{n_j}{2 \mu_{sj} h} C_{o}$$

となり、無限体積中一様分布の式(解6-1)の½となっている。

解説 7 環境γ線の現地測定におけるデータの処理法

7.1 HASL法

ここで述べるデータの処理方法はH. Beckらが開発したHASL方式によるものである。まず土壌中の放射性核種の濃度(S)は次式により求めることができる。

 $\frac{N_{\tau}}{S} = \frac{N_{0}}{\phi} \cdot \frac{N_{\tau}}{N_{0}} \cdot \frac{\phi}{S} \dots (\text{解7-1})$ ここで N_{\tilde{\text{N}}} / S : 単位体積の土壤中の単位 \gamma 線放出率あたりのピーク計数率 (cps) N_{\tilde{\text{N}}} / S : 単位体積の土壤中の単位 \gamma 線放出率あたりのピーク計数率 (cps) N_{\tilde{\text{N}}} / \phi : 点線源を検出器直下 (\text{\$N\$}\$}}}}}}}}} } } } delta general delta general delta general delta general delta d}}}

 $S = S_{0} \cdot exp(-\alpha z)$ (解7-3) と仮定すれば、地表からの高さhにおける直接 γ 線の線束密度 ϕ は

$$\phi = \iint \frac{S_{\alpha}}{4 \pi r^2} \exp\left(-(\alpha \swarrow \rho)(\rho z)\right) \exp\left(-\mu z/\cos\theta\right) \exp\left(-\mu h/\cos\theta\right)$$

 $\times 2 \pi r \sin \theta r dr d\theta$

$$\phi = \frac{S_{0}}{2} \int_{0}^{\pi/2} \int_{h/\cos\theta}^{\infty} \exp\left(-\left\{\left(\alpha \neq \rho\right) \rho + \left(\mu, \cdot h/\cos\theta\right)\right\} z\right)$$

となる。または d ϕ / d θ は

 $\frac{d\phi}{d\theta} = \frac{S_o}{2\rho} \frac{\sin\theta}{(\alpha/\rho)\cos\theta + (\mu_s/\rho)} \exp(-\mu_s h/\cos\theta) \cdots (\Re 7 - 5)$

により計算される。ここでS。は地表面における単位体積あたりの土壌から単位時間 あたりの光子放出数、 α は土壌中の γ 線源の分布状態を示す減衰係数(cm^{-1})である。 μ 、、 μ 。は土壌中および空気中の γ 線減衰係数、また ρ は土壌の湿潤みかけ密度で ある。ここで計算に使用するそれぞれの係数の値を解第7.1表、解第7.2表に示す。

自然放射性核種の ²³⁸U、²³² Thとそれぞれの娘核種および¹⁰Kのようなものは 深さ方向に一様分布であるとすれば、 $\alpha = 0$ となり、式(解7-4)、(解7-5) はそれぞれ

 $\phi = \frac{S_{0} / \rho}{2(\mu_{s} / \rho)} \int_{0}^{\pi/2} \exp\left(-\frac{\mu_{s}h}{\cos\theta}\right) \sin\theta d\theta \cdots (\mathbf{f} \mathbf{f} - 6)$ $\frac{d\phi}{d\theta} = \frac{(S_{0} / \rho)\sin\theta}{2(\mu_{s} / \rho)} \exp(-\mu_{s}h/\cos\theta) \cdots (\mathbf{f} \mathbf{f} - 7)$ となる。また降下直後のフォールアウト核種のように地表面のみに核種が平面分布す る場合は、α→無限大となり、式 (ff 7 - 4)、 (ff 7 - 5) はそれぞれ $\phi = (S_{0} / \rho) / (2\mu_{s} / \rho) \int_{0}^{\pi/2} \exp(-\mu_{s}h/\cos\theta)\sin\theta d\theta$ $= (S_{\Lambda} / 2)E_{1}(\mu_{s}h) \cdots (\mathbf{f} \mathbf{f} - 8)$ $\frac{d\phi}{d\theta} = (S_{\Lambda} / 2)\tan\theta \exp(-\mu_{s}h/\cos\theta) \cdots (\mathbf{f} \mathbf{f} - 9)$

となる。ここで S ^Λ は地表単位面積あたりに降下したフォールアウト核種からの単位 時間あたりの γ 線放出数である。 E ⁻ は指数積分関数である。

同様に、空間照射線量率(I)は

 $\frac{N_{i}}{\dot{x}} = \frac{N_{o}}{\phi} \cdot \frac{N_{i}}{N_{o}} \cdot \frac{\phi}{\dot{x}} \dots \dots \dots \dots (\# 7 - 10)$

を用いて計算することができる。ここで

ϕ / X: 土壤中の核種の放出するあるエネルギーのγ線の、検出器位置における直 接γ線線東密度を、その核種の放出する全γ線が検出器位置において与え る線量率で割った値

である。線量率を評価する場合には直接線のみならず、散乱線の寄与も考慮する必要 がある。この散乱線の寄与を計算するには、モンテカルロ法、輸送方程式などがある。 ここでは後者の方法により計算した結果を解第7.3表に示す。また H. Beckらが計算 した地上1mでの直接γ線束密度の値を解第7.4表に示す。

なお、主要核種の ϕ /S、 ϕ /Xについての計算結果を本文5.1表に示してある。

	y線エネルギー (k e V)	土壌の質量減衰係数 (cm2/g)	空気の線減衰係数 (cm ⁻¹)
	20	2.78	0. 000823
	25 30 35	0. 938	0.000380
	40 45	0. 471	0.000271
Contraction of the local distance of the loc	50 55	0.314 0.277	0. 000233
	60 65 70	0. 248 0. 230 0. 214	0. 000213
	75 80 85 90	0.202 0.190 0.185 0.178	0. 000194
	95 100 150 200	0. 173 0. 167 0. 139 0. 125	0.000182 0.000162 0.000148
and the second se	250 300	0. 115 0. 108	0. 000123
	350 400 450	0. 101 0. 0963	0. 000115
	450 500 550	0. 0815 0. 0875 0. 0844	0. 000105
	600 650 700	0. 0813 0. 0788 0. 0756	0. 0000970
	750 800 850 900	0. 0731 0. 0713 0. 0694 0. 0675	0. 0000851
	950 1000 1500 2000	0.0650 0.0638 0.0521 0.0449	0.0000765 0.0000623 0.0000535
	2500 3000 4000 5000 6000 8000	0. 0401 0. 0364	0. 0000431 0. 0000371 0. 0000330 0. 00003025 0. 0000268
1	10000		0.0000240

解第7.1表 土壌および空気の減衰係数

(HASL-258 (1972) より引用)

成	分	構	成
A 1 2	с о	13. 5	重量%
Fe₂C) 3	4.5	"
SiC) 2	67.5	"
C O 2		4.5	"
H₂ C)	10	11
ρ (?	『度)	1.6	g⁄cm³

解第7.2表 土壌の構成成分

解第7.3表 土壌中の単位 γ 線放出率 (γ cm⁻² s⁻¹、 $\alpha \neq \rho = 0$ の場合は γ g⁻¹ s⁻¹) あたりの地上1 m高における照射線量率 (μ R h⁻¹)

療原の		a/p	$-cm^3/g$	۲.			
光子エネルギー	0						30
(keV)	(Uniform)	0.0625	0.206	0.312	0.625	6.25	(Plane)
50	0.88	-	-	-	-	-	-
100	2.05	~0.095	0.185	0.215	0.270	0.400	0.438
150	3.39	0.140	0.285	0.335	0.418	0.620	0.700
200	4.88	0.200	0.390	0.460	0.570	0.845	0.960
250	6.37	0.258	0.491	0.583	0.731	1.08	1.25
364	10.2	0.404	0.771	0.896	1.11	1.63	1.91
500	14.4	0.558	1.03	1.23	1.52	2.27	2,60
6 6 2	19.6	0.738	1.37	1.60	1.97	2.95	3.39
750	22.6	0.837	1.54	1.80	2.21	3.32	3.80
1000	30.4	1.10	2.00	2.32	2.85	4.28	4.86
1173	36.2	1.28	2.31	2.63	3.27	4.87	5.52
1250	38.4	1.33	2.41	2.79	3.42	5.14	5.86
1333	41.8	1.42	2.56	2.95	3.62	5.35	6.16
1460	45.1	1.54	2.75	3.18	J.88	5.73	6.56
1765	54.6	1.78	3.25	3.75	4.40	5.45	7.78
2004	62.2	2.07	3.60	4.İ3	5.00	7.15	8.20
2250	69.5	-	-	-	-		-
2500	77.2	-	-	-	-	-	-
2750	85.0	-	-	-	-	-	-

.

地表面 1 cd、深さ無限大の柱状部分で光子が毎秒 1 個放出される場合の、地上高 1 mにおける照射線量率($\mu R h^{-1}$)。線源の深さ方向の分布を e x p ($-\alpha z$)で表す。ただし、 $\alpha \neq \rho = 0$ (ρ は土壌の密度)の場合については、土壌のグラム当たり、光子が毎秒 1 個放出されるときの照射線量率の値を示す。

(HASL-258より引用)

線源の			(a/2)-cm²/q			
光子エネルキー	0						•
(keV)	(Uniform)	0.0625	0.206	0.312	0.625	6.25	(Plane)
50	1 4407	0 0916	0 7745	0 3040	0 4740		1 677
50	1.4403	0.0010	0.2245	0.3049	0.4748	1.14/	1.3//
100	2.1/44	0.1458	0.3627	0.4/08	0.6/86	T. 323	1./10
150	3.3264	0.1702	0.4103	0.5261	0.7438	1.427	1.775
200	3.7056	0.1843	0.4550	0.5770	0.8018	1.483	1.804
250	4.0640	0.2008	0.4697	0.5910	0.8195	1.506	1.963
364	4.7184	0.2263	0.5158	0.6429	0.8775	1.578	1.933
500	5.3904	0.2519	0.5595	0.6918	0.9334	1.650	1.995
662	6.1456	0.2789	0.6041	0.7412	0.9889	1.719	2.054
750	6.5312	0.2919	0.6257	0.7649	1.015	1.752	2.084
1000	7,5280	0.3245	0.6769	0.8209	1.077	1.830	2.151
1173	8,1472	0.3437	0.7067	0.8531	1.113	1.874	2.189
1250	8.4384	0.3523	0.7198	0.8675	1.129	1.895	2.205
1333	8.7504	0.3617	0.7336	0.8826	1.145	1.914	2.224
1460	9.1472	0.3731	0.7511	0.9011	1.166	1.941	2.247
1765	10.091	0.3997	0.7897	0.9428	1.211	1.997	2,294
2004	10.818	0.4188	0.8173	0.9725	1.243	2.036	2.334
2250	11.397	0.4357	0.8414	0.9982	1.271	2.071	Z.358
2500	12.173	0.4536	0.8667	1.025	1.300	2.105	2.385

解第7.4表	土壤中の単位γ線放出率(γ㎝-²s-'、α/ρ=0の場合は	
	- γ g ⁻ ' s ⁻ ') あたり地上 l m 高における直接 γ 線の線束密度(γ cm ⁻ ² s ⁻ '))

(HASL-258より引用)

解第7.1図 土壌中に分布するγ線放出核種の地上1m高での直接γ線束密度(φ) とその角度分布(dφ/dθ)

7.2 ストリッピング法

照射線量率を得る目的で、ゲルマニウム半導体検出器によるパルス波高分布の解析 にストリッピング法を適用した例を紹介する¹¹。この方法はNaI(T1)シンチレ ーションスペクトロメータにおけるストリッピング法と同等の内容であるが、Ge半 導体検出器は分解能が優れているので、これに見合ったコンプトン分布の差し引きを 採用している点が異なっている。

ゲルマニウム半導体検出器で計測されたパルス波高分布は、入射γ線のエネルギー を完全に吸収した分布、一部のみを吸収した分布、および宇宙線の荷電粒子の通過に より生ずる分布から成り立っている。パルス波高分布から照射線量率を求めるには、 後の2つの分布を差し引き、γ線の全エネルギー吸収のみから成る分布を求める必要 がある。全エネルギー吸収から成る分布が求まれば、対応する区間の計数をそれぞれ 検出器のピーク効率で割って入射エネルギースペクトルを得ることができる。

7.2.1 宇宙線による分布

宇宙線による分布はパルス波高分布の3~4MeVの間の計数率を平均し、この 計数率が低エネルギー域まで均一に分布していると仮定して差し引くことができる。 この領域による計数率は大変少ないので宇宙線線量についてはかなりの誤差をも つ、またこの領域にγ線が存在することがあることも考慮しておくことが必要で ある。

7.2.2 入射 γ線の部分的エネルギー吸収による分布

ゲルマニウム半導体検出器内で入射 γ 線のエネルギーの一部が吸収されて生ずる 分布で、コンプトン効果による最大エネルギー端から低エネルギーまで連続的に分 布する。コンプトン端のエネルギーE。(MeV)は入射 γ 線のエネルギーを E_o(MeV)とすれば、次式で表現できる。

 $E_{c} = E_{p} - E_{p} / \left\{ 1 + \frac{2 E_{p}}{0.511} \right\}$

ゲルマニウム半導体検出器によるパルス波高分布には、解第7.3図の実線で示したように、E。以下の非直線分布のほかに、E。とE。の間にもかなりの計数の分布が認められる。これは検出器内で生ずる多重散乱によるものである。

部分的エネルギー吸収による分布を差し引くため、解第7.3 図の点線で示したようにコンプトン端E。以下の分布を等間隔で10区間に、E。とE。の間を等間隔の4 区間に分割する。

この分布の形は、実際は、 γ 線のエネルギーと検出器への入射角の関数である。 照射線量率へ大きな寄与をするより高いエネルギー域で、エネルギーと入射角によってパルス波高分布の形が大きく変化することのない形状の検出器を使用する。解 第7.3 図で 0.185M e V (= E, - E,)のところに認められるピークは、検出器 結晶を取り付けているコールドフィンガーで生じた後方散乱 γ 線の全エネルギー吸 収によるものである。このピークは γ 線が検出器軸に平行に近い角度で入射すると きにのみ認められるもので、全立体角 4 π に対して小さい割合を占めるにすぎない ので、フィッティンプの際には特に考慮する必要はない。

7.2.3 ストリッピング操作

宇宙線と入射 γ 線の部分的エネルギー吸収に対して仮定した分布を用いて、計測 したパルス波高分布にコンピュータで次式のようなストリッピング操作を行う。

 $N_{1}' = N_{1} - \sum_{r=1}^{1} f_{1,r}(r_{1} - 1) N_{1}' - N_{1}$
この式で

$N_i' \setminus N_j'$:入射ヶ線の全エネルギー吸収による、あるエネルギー区間の計数
N	: 全ての線源による、あるエネルギー区間の計数
L	: 最大エネルギーγ線(2.615M e V)を含むエネルギー区間
fij	: エネルギー区間 j に入射した γ 線の部分的エネルギー吸収に
	よるエネルギー区間 i での連続分布中の計数の割合
r,	: エネルギー区間 j に入射した γ 線の全エネルギー吸収ピーク
	計数に対する全体の計数の比(すなわちP/T比の逆数)
N c	: あるエネルギー区間 i での、一定と仮定した宇宙線による計数

である。

最適な分解能を得るには1keV/チャネルとした方がよいが、ストリッピング 操作における処理時間を短くするため10keV/チャネルとする。この変更により 結果の精度を悪くすることなく、処理時間を短くできる。

ストリッピング操作は最大エネルギー(2.615MeV)を含む区間から始める。 この操作の概念図を解第7.4図に示した。

rは次式のように求める。

 $r(E) = \varepsilon \cdot (E) / \varepsilon_{P}(E)$

円筒型G e 半導体検出器は全ての入射角にわたってr(E)が一様な応答を示す ことはない。部分的エネルギー吸収による分布の形は入射角によって大きく変化す ることはないが、r(E)の入射角依存性を考慮に入れる。r(E)の角度依存性 は入射 γ線のエネルギーによって大きく変化することはないので、照射線量率に影 響のあるより高いエネルギーについて補正した値を用いる(解説 7.1 参照)。

7.2.4 線束密度の計算

ストリッピング操作を施した分布の各エネルギー区間を、それぞれ対応した全エ ネルギー吸収ピーク効率と計測時間で割って入射線東密度を求める。すなわち、 $\phi_{i} = N_{\perp} / (\varepsilon_{p,i} \cdot T)$

ここで、 $\phi_i = x + x + i = x +$

7.2.5 照射線量率の計算

照射線量率を次式によって計算する。

 $\dot{\mathbf{X}} = 66.05 \sum_{i=1}^{L} \phi_{i} \cdot \mathbf{E}_{i} \cdot (\mu_{en} \neq \rho)_{i}$

ここで

 $\dot{\mathbf{X}}$: 照射線量率 ($\mu R / h$)、 $E_{+} = \mathbb{Z}$ 分の平均エネルギー ($M \in V$) ($\mu \in / \rho$) : : 区分 i の平均エネルギーの γ 線に対する空気の質量エネルギー吸収

係数 (cm/g)

66.05: MeV/(g・s) からµR/hへの変換因子である(5.6参照)。
これにさらに8.73×10⁻³を乗じれば、空気吸収線量率(µGy/h)が求められる。
なお、低エネルギー領域は電気回路の雑音などの影響を受けるので、実際上の下

7.2.6 使用シンチレータによる吸収線量

限は0.05MeVとする。

補正波高分布が得られると、検出体の質量から検出体の平均吸収線量率が得られ る。この値は放射線場が一定であれば一定の数値を示すので、エネルギー校正、シ ンチレータの質量の差など測定に際してのハード、ソフトに関するチェックとして 役立つ。算出は次式による。

 $\sum_{i=1}^{1} N_{xx} \times (C H_{xx} - 0.5) \times 0.6 \times 3.6 \times 10^{-2} \times E_{xx} / W s$

ここでIIとJJは計算されるエネルギー領域、N_{xx}、CH_{xx}はそれぞれXXチャネルの計数率値(cps)、チャネル番号(10k e V/ch)およエネルギーでWsシンチレータの重量である。通常の環境においては3 inの球形NaI(TI)シンチレータにあっては1 μ R/hに対して、約0.85 μ rad/h となる。

7.2.7 結果の例

ストリッピング操作を施した結果の1例を解第7.5図に示した。実線は元のパル

ス波高分布で、点線は操作後の分布である(クローズドエンド同軸型、59mm $\phi \times 35$ mm ℓ の場合)。約55~65%の計数の減少が認められる。

(参考文献)

 K. M. Miller; "A Spectral Stripping Method for a Ge Spectrometer used for Indoor Gamma Exposure Rate Measurements", EML419, DOE, July. (1984) K. M. Miller & H. L. Beck Indoor Gamma-ray and Cosmic-ray Exposure-rate Measurements using a Ge Spectrometer and Pressurized Ionization Chamber Radiation Protection Dosimetory 7:185 ~ 189(1984)

解第7.3図 0.662 MeVγ線が検出器軸に平行に入射するときのパルス波高分布(実線)

と、ストリッピング操作における多重ステップ関数近似(点線)

-110-

解第7.4図 ストリッピング法の概念図

-111-

解第7.5 図 ストリッピング操作前(実線)と後(直線)の分布

-112-

7.3 マトリックス法を用いた天然放射性核種別線量寄与の解析¹⁾

環境放射線のスペクトルはK-40、U系列、Th系列のスペクトルの合成である、 という観点から、連立方程式による解析が行われる。標準となる各線源の、各領域に 対する線量寄与をまとめると、次のようになる。

	線源	K-40 領域	U系列領域	Th系列領域
K-40	線量寄与 寄与率 寄与率の変形	N K K	Nĸu Rĸu =Nĸu/Nĸĸ Nĸu =Rĸu • Nĸĸ	Nkih Rkih= Nkih /Nkk Nkih=Rkih * Nkk
U系列	線量寄与 寄与率 寄与率の変形	Nuk Ruk=Nuk /Nuu Nuk=Ruk • Nuu	Nuu	Nuth Ruth= Nuth Nuu Nuth= Ruth • Nuu

線量寄与 Nink Ninu Ninu Th系列 寄与率 Rink=Nink/Ninih Ninu=R inu/Ninih 寄与率の変形 Nink=Rink・Ninih Ninu=R inu・Ninih

環境放射線の測定結果から領域を選び、それぞれ3つの領域の数値から線量寄与 (計数寄与)を求める。すなわち各領域の計数率をNsk、Nsh、Nsth とし、測定結果 中のK-40、U系例、Th系列の主領域への線量寄与をNk、Nu 、Nthとすると、表 の式を用いて次のように表わすことができる。

 $N_{5k} = N_k + R_{11k} \cdot N_U + R_{1hu} \cdot N_{1h}$

 $N_{su} = R_{ku} \cdot N_k + N_U + R_{thu} \cdot N_{th}$

 $N_{s \iota h} = R_{k \iota h} \cdot N_{k} + R_{u \iota h} \cdot N_{u} + N_{\iota h}$

これをマトリックスを用いて表すと、

(Nsk)	$\begin{bmatrix} 1 \end{bmatrix}$	Rĸu	Rthk)	N k)
Nsu	=	- R k +1	1	Ribu		Nu	
Nsin)	Rkin	Ruch	1)	l _{Nin})

逆マトリックスを用いると、

(Nsk)	$\int 1$	R ., ĸ	Rthk	$)^{-1}$ (Ns	k `
Nu	=	R ĸ .,	1	Rinu	Ns	ч
Nin	J	Rkin	Rush	1	J (_N ,	ı h

となる。

この式に得られたデータを代入すると、その領域の、その線源のみの寄与を求めることができる。

照射線量率を得るデータ処理によって求めた値をN,とすると、この方法で算出した値N=N_k+N_u+N_u+N_uと一致しなければならない。通常の測定では、両者の差が10%以内であれば、N_k、N_u、N_uの値は信頼できる。なおN,>N+(N×10%)となった際には、人工放射性核種の存在を考慮して検討をすることが必要となる。

(参考文献) 1)NCRP Report No. 50, Eivironmental Radiation Measurements, p. 84-94.

付 録

付録1 ストリッピング法によるNal(Tl)シンチレーション スペクトロメータのデータ処理の例

このデータ処理は3 in ϕ 球形NaI(TI)シンチレータを用いて得られたパルス波高 分布を処理し、0~3 Me V領域の γ 線、ならびに宇宙線に関する情報を得るための計算 処理である。

このデータ処理は(1)測定結果を10k e V/chに変換する処理、(2)処理に必要な入力デ ータの選択と導入、(3)上記の入力データにもとづいて行う計算、(4)計算結果の表示、など に大別される。

(1) 測定結果を10k e V / c h に変換する処理

この変換処理はエネルギー校正すなわち得られたパルス波高分布のチャネルとエネル ギーの関係を規格化(全エネルギー領域についてチャネル幅を一定にする)する。この 校正はチャネル間の数値の補間で行っている。通常"0"点、⁴⁰K(1461k e V)、

²"*T1(2614keV)の3点を用い、一次式で補正を行うが、高次の歪の補正には測 定されたパルス波高分布のチャネルとエネルギーの関係の(次数+2)組以上を用い、 n次式でフィッティングを行う。チャネル間の数値の補間は比例配分によって決定する。 10keV/chに変換した結果は(2)以後のデータ処理の基本データとなるので、この校 正の正確さは結果の精度に影響する。

(2) 処理に必要な入力データ

処理に必要な入力データのうち検出体(NaI(T1)シンチレータ)のP/T比が、 この解析に必要な唯一の実測データである。この値は単色γ線の点線源を用いて求めら れ、付第1.1図、付第1.1表にその例を示す。

このほか、処理に必要な全計数効率等のデータは、γ線とシンチレータとの作用断面 積等の定数の文献値から計算によって求める。

(3) 入力データにもとづいて行う計算処理

10k e V / c h に変換した測定結果の処理は(a)コンプトン寄与の差引き、および(b)ピ ーク効率の適用である。ピーク効率(PE)はP/T比(PTTR)を用い、球形シン チレータの直径 d と N a I (T 1)シンチレータの減衰係数 μ から次式

$$PE = \left\{ 1 - \frac{2}{(\mu d)^{2}} + 2e^{-\mu d} \left(\frac{1}{(\mu d)^{2}} + \frac{1}{\mu d} \right) \right\} (PTTR)$$

によって求めることができる。3 in Ø 球形NaI(T1)シンチレータについて算出さ れたピーク効率の値を付第1.2表に示した。ピーク領域カウントN₀とコンプトン連続 部分のカウントN₀とは第1.2表に示した。

 $N_c = N_p (1 - PTTR) / (PTTR)$

の関係にある。N_oから上式によりN_oを求め、N_oをコンプトン連続部分の各チャネル に均等に振り分けて差引く。

これは、コンプトン連続部分を矩形で近似することに相当する(付第1.2図)。実際 には、まず3MeVに相当するチャネル(10keV幅)をエネルギーE γ の光子の全吸 収ピーク(面積N_pカウント)と見倣し、このN_pから求められたN_eを、コンプトン端 E_e(MeV)(=E γ /(1+0.511/2E γ))から0まで、対応する各チャ ネルに均等に振り分けて差し引き、この操作を高エネルギー側から順次低エネルギー側 に向けて繰り返す。この様にしてコンプトンの寄与を除いたスペクトルが得られ、各エ ネルギーごとのピーク効率およびシンチレータケースによる γ 線の減衰率をチャネルご とに適用すれば、 γ 線線東密度で表された光子スペクトルがえがかれる。さらに、各エ ネルギーごとの光子東密度–照射線量換算係数を適用すれば、エネルギー別の照射線量 率も求められる。

(4) 結果の信頼性等

この方法における誤差には、統計的なものとして計算過程を含めた計数誤差、また、 系統的な誤差として、数え落し、10k e V/chの変換のさいの誤差、P/T比、コ ンプトン連続部分の差引き方法(矩形と実際の形との差)および基本定数の選び方、バ ックグラウンドデータのちがいなどが考えられる。

(5) 解析と結果の表示

標準的には、0~3MeVの範囲を γ 線に関する情報、3MeV以上の領域を主とし て宇宙線に関する情報として扱う。

- i) 0~3MeV領域の解析と表示
 - ① 測定データを10k e V / c h に変換した結果の表示。
 - コンプトン寄与の差引いたスペクトルの表示。
 - ③ 上記スペクトルに対し、光子のピーク効率を用いて線束密度を算出した結果の表

示、すなわち、光子スペクトルの表示。

- ④ 光子スペクトルから照射線量スペクトルに変換した結果の表示。
- ⑤ ①、③、④について、3MeVより10k eV毎の値を低エネルギー領域まで積分した結果。

これらが標準的な表示である。①、②、③、④については一般に片対数で表示する。 ④の積算結果については、指定されたエネルギー(通常30k e V)までの積分値を1 とした百分率を直線表示する。またデータ番号とともに γ 線、宇宙線線量を付第1.3 図の中に表示することもできる。

ii) 3 Me V以上の領域の取扱

3 M e V以上の情報は主として宇宙線にもとづくものであり、3 in ϕ 球形N a I (T1) シンチレータにおいては、3 M e V以上の計数率に2.12 (μ Rh⁻⁺) / (cps) という定数 (N₃)を乗じて、宇宙線線量率相当値とすることができる。

しかし、3 Me V以上のエネルギーの γ 線が存在する環境(加速器施設、原子炉施 設近傍など)にあっては、高エネルギー γ 線を宇宙線寄与として過大に見積もること がある。このような恐れのある場所での測定に際しては、人工放射線にもとづく影響 の少ないエネルギー領域、例えば10 Me V以上の領域を宇宙線線量の算出に利用する ことが必要である。この際、上記定数としてはN₁₀ = 3.5 (μ R/h) / (c p s) を用いる。この両定数の比(N₁₀/N₃)は、環境における宇宙線成分のちがいによ り 1.3~1.87の幅があるが、ここでは1.65を用いる。

付第1.1図 NaI(T1)シンチレータのP/T比

付第1.1表 3 in Ø 球形NaI (T1) シンチレータのP/T比

keV	0	1 0	20	30	4 0	50	60	70	8 0	90
0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
100	0.99	0.985	0.98	0.97	0.962	0.955	0.945	0.94	0.933	0.925
200	0.916	0.907	0. 9	0.89	0.882	0.872	0.862	0.853	0.843	0.83
300	0.82	0.806	0.795	0.785	0.77	0.76	0.746	0.735	0.725	0.713
400	0.703	0.691	0.682	0.67	0.66	0.65	0.641	0.631	0.621	0.612
500	0.604	0.596	0.586	0.578	0.57	0.562	0.555	0.547	0.541	0.535
600	0.527	0.522	0.516	0.51	0.505	0. 5	0.495	0.49	0.485	0.48
700	0.475	0.47	0.466	0.461	0.457	0.453	0.449	0.445	0.441	0.438
800	0.434	0.431	0.428	0.425	0.421	0.417	0.414	0.411	0.408	0.405
900	0.401	0.398	0.396	0.393	0.391	0.387	0.385	0.382	0.379	0.376
1000	0.374	0.371	0.369	0.366	0.364	0.361	0.359	0.357	0.355	0.353
1100	0.35	0.348	0.346	0.344	0.342	0.34	0.338	0.336	0.332	0.33
1200	0.33	0.328	0.326	0.324	0.322	0.32	0.318	0.316	0.314	0.312
1300	0.31	0.308	0.307	0.305	0.304	0.302	0. 3	0.298	0.296	0.295
1400	0.294	0.292	0.291	0.29	0.289	0.287	0.285	0.284	0.283	0.281
1500	0.28	0.278	0.277	0.276	0.275	0.273	0.272	0.271	0.27	0.269
1600	0.267	0.266	0.265	0.264	0.263	0.261	0.26	0.259	0.258	0.257
1700	0.255	0.254	0.253	0.252	0.251	0.25	0.249	0.248	0.247	0.246
1800	0.245	0.2446	0.243	0.242	0.241	0.24	0.239	0.238	0.237	0.236
1900	0.235	0.234	0.233	0.232	0.231	0.23	0.229	0.228	0.227	0.227
2000	0.226	0.225	0.224	0.224	0.223	0.222	0.221	0.22	0.22	0.219
2100	0.219	0.218	0.217	0.216	0.215	0.214	0.213	0.212	0.211	0.211
2200	0.21	0.209	0.209	0.208	0.208	0.207	0.207	0.206	0.205	0.204
2300	0.204	0.203	0.203	0.202	0.202	0.201	0.2	0.199	0.198	0.197
2400	0.197	0.196	0.196	0.195	0.195	0.194	0.193	0.193	0.192	0.191
2500	0.191	0.19	0.19	0.189	0.189	0.187	0.187	0.186	0.186	0.185
2600	0.185	0.184	0.184	0.183	0.182	0.1 8 1	0.181	0.18	0.18	0.179
2700	0.179	0.178	0.178	0.177	0.177	0.176	0.176	0.175	0.175	0.174
2800	0.174	0.173	0.173	0.172	0.172	0.171	0.171	0.17	0.17	0.169
2900	0.169	0.168	0.168	0.167	0.167	0.166	0.165	0.165	0.164	0.164

keV	0	10	2 0	30	4 0	50	60	70	80	90
0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.999	0.999
100	0.988	0.982	0.976	0.964	0.954	0.945	0.932	0.924	0.913	0.900
200	0.887	0.873	0.861	0.845	0.831	0.815	0.799	0.784	0.768	0.749
300	0.734	0.716	0.700	0.685	0.666	0.652	0.634	0.620	0.607	0.592
400	0.579	0.565	0.554	0.540	0.528	0.516	0.506	0.495	0.484	0.474
500	0.466	0.457	0.447	0.438	0.430	0.421	0.414	0.406	0.400	0.393
600	0.386	0.380	0.374	0.368	0.363	0.358	0.353	0.348	0.343	0.338
700	0.333	0.328	0.324	0.319	0.315	0.311	0.307	0.304	0.300	0.296
800	0.293	0.289	0.286	0.283	0.280	0.276	0.273	0.270	0.267	0.264
900	0.261	0.258	0.256	0.253	0.251	0.248	0.246	0.243	0.241	0.238
1000	0.236	0.234	0.232	0.229	0.227	0.225	0.223	0.221	0.219	0.218
1100	0.215	0.213	0.212	0.210	0.208	0.206	0.204	0.202	0.200	0.198
1200	0.197	0.196	0.194	0.192	0.191	0.189	0.187	0.186	0.184	0.182
1300	0.181	0.179	0.178	0.177	0.176	0.174	0.173	0.171	0.170	0.169
1400	0.168	0.166	0.165	0.164	0.163	0.162	0.160	0.160	0.159	0.157
1500	0.156	0.155	0.154	0.153	0.153	0.151	0.150	0.150	0.149	0.148
1600	0.147	0.146	0.145	0.144	0.144	0.142	0.141	0.141	0.140	0.139
1700	0.138	0.1 3 7	0.136	0.136	0.135	0.134	0.134	0.133	0.132	0.131
1800	0.131	0.130	0.129	0.128	0.128	0.127	0.1 2 6	0.126	0.125	0.1 2 4
1900	0.123	0.123	0.122	0.121	0.121	0.120	0.119	0.118	0.118	0.118
2000	0.117	0.116	0.116	0.116	0.115	0.114	0.114	0.113	0.113	0.113
2100	0.112	0.112	0.111	0.111	0.110	0.109	0.109	0.108	0.108	0.107
2200	0.1 0 7	0.106	0.106	0.106	0.105	0.105	0.105	0.104	0.104	0.103
2300	0.103	0.102	0.102	0.102	0.102	0.101	0.100	0.0997	0.0991	0.0986
2400	0.0985	0.0979	0.0978	0.0972	0.0972	0.0966	0.0960	0.0959	0.0953	0.0948
2500	0.0947	0.0942	0.0941	0.0935	0.0935	0.0924	0.0923	0.0918	0.0917	0.0912
2600	0.0911	0.0906	0.0905	0.0899	0.0894	0.0888	0.0887	0.0882	0.0881	0.0875
2700	0.0875	0.0869	0.0869	0.0864	0.0863	0.0857	0.0857	0.0852	0.0851	0.0846
2800	0 0 8 4 5	0.0840	0.0840	0.0834	0.0834	0.0829	0.0828	0.0823	0.0822	0.0817
2900	0.0817	0.0811	0.0811	0.0805	0.0805	0.0800	0.0794	0.0794	0.0788	0.0788

付第1.2図 コンプトン連続部分の差引き方法

6ATA NO. +C+ + 262097.0	CHANNEL KEV/CH 1024.0 10.00	1 TIHE LAS	1-CH LIVE-TIME 6.2 2400.0	A () E-CNT 3443.0	COS-ONSE (UR/H) 3,041	GAMMA(UR/H)(CH) 0.6326+01 3	WEIGHT E/CH 820.0 6.73
OR I GH	RESULTS	PER 0 0-50	50-100 100-25	0 250-500	500-1000 -2	- 3000 -	TDUS 0.0484
DATA	212.08CPS	13.5+ -0.295	5.548 51.61	8 23.424	12.102 6.	876 0.730 .	11(() 3443.0
FLUX	5.840	0.913 -3.418	1.081 39.03	8 21.322	15.537 19.	984 4.335 4	11(C) 3020.0 R
0056	6.567	-2.611	0.101 10.27	11.111	19.431 43	14 13.860 .	1-HEV 1441.0
ADUS	5.403/	0.453 -0.030	1.660 23.11	1 22.011	23 409 25		5.efy 3020.0 B
,							
NO.	DATA(CPS)	PEAR(CPS)	FLUX(CH-2)	DOSE (HHR/H)	SUH OF DATA	SUH OF FLUX	SUH OF DOSE
1	-0.764E-03	-0.174[+01	-0.3826-01	-0.118E+00	0.2126+03	0.577E+01	0.632E+01
2	-0.376E-01	-0.178E+01	-0.390E-01	-0.267E-01	0.2126+03	0.581E+01	0.644E+01
د	-0.108E+00	-0.185E+01	-0.4062-01	-0.118E-01	0.212E+03	0.585E+01	0.647E±01
4	-0.223E+00	-0.190E+01	-0.4168-01	-0.707E-02	0.212E+03	0.589E+01	0.648E+01
5	-0.264E+00	-3.184E+01	-0.405E-01	-0.5158-02	0.212E+03	0.593E+01	0.649E+01
6	-0.384E+00	-0.191E+01	-0.4186-01	-0.528E-02	0.2136+03	0.597E+01	0.649E+01
7	-0.477E+00	-0.189E+01	-0.414E-01	-0.520E-02	0.213E+03	0.601E+01	0.650E+01
8	-0.413E+00	-0.177E+01	-0.3886-01	-0.486E-02	0.214E+03	0.605E+01	0.650E+01
9	0.324E+01	0.198E+01	0.4356-01	0.605E-02	0.2146+03	0.609E+01	0.651E:01
10	0.980E+01	0.859E+01	0.188E+00	0.2898-01	0.211E+03	0.605E+01	0.6506+01
10	0.9806+01	0-8598+01	0 1885+00	0 2895-01	0 2115+03	0 4055+01	0 6505+01
20	0.596E+01	0.5205+01	0 1275+00	0.4518-01	0.1226+03	0 4255+01	0 6045+01
30	0.278E+01	0.2246+01	0 6555-01	0.3746-01	0.7645+02	0.3226+01	0.5625+01
40	0.158E+01	0.1145+01	0.4345-01	0.3338-01	0.5416+02	0.2445.01	0.5022-01
50	0.861E+00	(-533E+00	0.2665-01	0.3448-01	0 4276+02	0.2366.01	0.5252701
60	0.748E+00	0.468E+00	0 2615-01	0 1045-01	0 3485+02	0 2116+01	0 4725401
70	0.473E+00	0-2266+00	0 1476-01	0.1996-01	0.3776+02	0 1855-01	0.4126-01
80	0.3845+00	0.1775+00	0 1315-01	0.1996-01	0.2156.02	0.1716.01	0.4306.01
90	0.1458+00	0.1615+00	0 1345-01	0.1745-01	0 1995+02	0.1596+01	0.4200.001
100	0.327E+00	0-171E+00	G 158E-01	0 2935-01	0 1655+02	0.1445401	0 1716+01
	0.9212.00	01112.00	0.1900 01	0.2732-01	0.102002	0.1442.01	0.0100
110	0.230E+00	0,911E-01	0.916E-02	0.184E-01	0.138E+02	0.132E+01	0.351E+01
120	0.236E+00	0.1176+00	0.1298-01	0.280E-01	0.11JE+02	0.120E+01	0.325E+01
120	0.141E+00	0.8546-01	0.103E-01	0.2378-01	0.939E+01	0.109E+01	0.3016+01
140	0.161E+00	0.1296+00	0.1678-01	0.402E-01	0.814E+01	0.984E+00	0.276E+01
150	0.394E+00	0.3656+00	0.5072-01	0.1288+00	0.507E+01	0.611E+00	0.184 <u>€+</u> 01
160	0.504E-01	0.259E-01	0.3835-02	0.102E-01	0.302E+01	0.358E+00	0.119E+01
170	0.481E-01	0.257E-01	0.405E-02	0.1136-01	0.259E+01	0.328E+00	0.111E+01
100	0.4558-01	0.2436-01	0.4076-02	0.118E-01	0.215E+01	0.2928+00	0.101E+01
190	0.263E-01	0.807E-02	0.143E-02	0.428E-02	0.179E+01	0.265E+00	0.929E+00
200	0.2351-01	0.8818-02	0.1645-02	0.508E-02	0.1576+01	0.2558.00	0.900E+G0
210	0.317E-01	0.1978-01	0.3836-02	0.123E-01	0.132E+01	0.232E+00	0.829E+00
220	0.320E-01	0.214E-01	0.4396-02	0.1466-01	0.101E+01	0.194E+00	0.702E+00
230	0.156E-01	0.101E-01	0.215E-02	0.7396-02	0.753E+00	0.161E+00	0.593E+00
:40	0.1108-01	0.796E-02	0.177E-02	0.6258-02	0.611E+00	0.144E+00	0.533E+00
220	0.1146-01	0.1158-01	0.2058-02	0.963E-02	0.513E+00	0.124€.00	0.463E+00
260	0.3666-01	0.368[-01	0.8346-07	0.329E-01	0.296E+00	0.7278-01	0.2735.00
270	0.7448-02	0.7528-02	0.18AE-02	0.718E-02	0.231E-01	0.575E-02	0.2156-01
280	-0.6636-03	-0.663L-03	-0.1/28-03	-6.670E-03	-0.124L-01	-0.3328-02	-0.1336-01
290	-0.8621-03	-0.867E-03	-0.2316-93	-0.423E-03	-0.470E-02	-0.1298-02	-0.5266-02
300	-0.124E-02	-0.1246-02	-0.346E-03	-0.1418-02	-0.1246-02	-0.346E-03	-0.141E-02

付第1.3表 3 in Ø 球形NaI(T1)シンチレーションスペクトルの解析結果の表示例

-125-

付第1.4表 付第1.3 表の説明

© <u>data no.</u>	データ番号	測定データの番号で、ABCDEFの 6 個の数字で
		表す。Aは197A年、または198A年のデータを
		意味し、BCは、A年のテープの順番で、 ABC
		がテープ番号となる。
		DEFには ABCテープのデータ番号をあてる。
© <u>" B"</u>	この表示の意味	検出体固有のバックグラウンドまたは特定の
		データをバックグラウンドとして差引いたデ
		ータを用いて計算したものであることを示す。
© <u> </u>	この表示の意味	バックグラウンドの差引きは上記に示した差
		し引きのほか、さらに宇宙線等の寄与分を
		3 MeV以上の数 (ABOVE COUNT)から求め、
		差引いた結果を用いて計算したものであるこ
		とを示す。
©	この表示の意味	これらのバックグラウンドなどを差引かない
		生のデータを用いて計算したものであること
		を示す。
CHANNEL	チャネル数	測定データのチャネル数、このプログラムで
		は1024、または2048のいずれかが多い。
KEV/CH	チャネル幅	NO. に示された数のチャネル幅を示す。通常
		10k e V/CHとなっている。
TIME	収録時刻	あらかじめセットされた時間により通常収録
		された時刻を示す。最初の2桁が時間、それ
		ぞれ以下は小数点を含む分を示す。また収録
		データ番号をADEF.XYとし、DEFよりXY個デ
		ータを集めたものを示す場合もある。
LAST-CH	最後のチャネル	データ解析した場合の最後のチャネルを示す。
		通常3MeVに相当するチャネルが示される。

LIVE-TIME	測定時間	計測した時間(s)を示すものでスペクトル
		の0チャネルを用いている。ときには、この
		時間を別に入れる場合があるほか0チャネル
		の数を数倍したものを用いる場合(数え落し
		の補正など)があり、この場合にはスペクト
		ルの0チャネル(計数時間)を括弧内に示す。
ABOVE-CNT	超過計数	スペクトル解析した最後のチャネル(LAST
		CH)から実際に使用した最後のチャネルま
		での全計数値。
$\underline{\text{COS-DOSE}}$ (μ R, H)	宇宙線線量	ABOVE CNT から計算された宇宙線線量(ABOVE
		CNT/LIVE TIME) ×Kで計算される。
		Kには2.12 を用いている。別の値を用いた
		場合は、最後の項にその値が示される。
$GAMMA (\mu R, H)$	ガンマ線線量	通常3MeVまでのスペクトルから計算して
		得られたガンマ線線量。
(CH)		上の線量計算で採用したエネルギー領域下限
		を示す数で、この値が3であれば、30keV
		まで積算したことを示す。通常2~5を用い
		る。この例で10k e Vになっている。
WEIGHT	検出体重量	使用した検出体(NaI(TI))の重量。
		これをあらかじめ与えることによって、波高
		分布の各エネルギーに相当する計数率とエネ
		ルギーの積の総和(Σ N, × E,)からシ
		ンチレータの平均吸収線量率が求められる。
E. CH	チャネル幅	測定データのチャネル幅を示す。測定された
		スペクトルをn次式で10keV/CHに補正
		しており、この際あらかじめ求めた1次式の
		係数を示してある。
注1)	計算結用	DATA/ナ 1010 - ひんこ 01-11 ナズの手粉ののの
NESULIS_	可异柏禾	UNIANA、IUK E V から 3 MEV よ C UN J 奴谷 UP So
		『LUANA、IUKEV からJMEVまでの主禄朱畬度

-127-

	γ / cm_{\circ}
	DOSEは、照射線量率μR/h ⁻¹ で、10keV から
	3MeVまでを積算したもの。
	ADOSは、シンチレータ内の平均の吸収線量率
	(µrad/h)。
PER D	RESULTSの各量を照射線量の値で割ったもの、
	ただしDOSEの値(これは1.00になるはず)は
	チャネル領域を(CH)×10keV ~3MeVとした
	値を10keV ~3MeV の値で割っている。この
	ため値は1.00とならないことがある。
0~50, 50~100, 100~250	この値は、各結果について、それぞれエネル
	ギー領域0~50keV、50~100keV、100~250
	keV 、 250~ 500keV 、 500~1000keV 、
	1000~2000keV 、2000~3000keV 間の百分率。

注1): RESULTS には、シンチレータケースによる吸収などの補正をした結果、特性のわかった電離箱など他の測定値との比較、生殖線線量などの値等、5組まで計算して打ち出すことが可能である。この場合DATA以外の数値は変わる。
 注2): アンダーラインの内容は結果のグラフ表示に際して用いられる内容である。

すなわち、データ番号;C、D、B、の表示;宇宙線線量率C=;ガンマ線量 率G=、である。

NO.	チャネル番号	データの打出しは、チャネル番号(10keV/CH)
		ごとの値が打出されるが、打出す内容は選択
		できる。通常1ページに打出す時は1~100
		keVまでは10keV/CHごと、100keV~3MeVまで
		は100keV毎の値を打出す。
©DATA (cps)		測定データをn次式で10keV/CHに補正した各
		チャネル(10keV)ごとの計数率値(cps/10keV)
		を指定チャネルについて打出す。
©PEAK (cps)		DATA (cps)からコンプトン寄与を引いた結果
		で、"B"、"C"の場合は、この際あらか
		じめ別に与えられたバックグラウンドスペク
		トルを差引いたものについて計算が行われる。
\bigcirc FLUX (γ · σ	$cm^{-2} \cdot s^{-1}$)	PEAK (cps)の結果を検出体のピーク効率で割
		って得られた、真の光子束密度。
\bigcirc DOSE (μ R/H	ו)	上記光子束密度から算出した照射線量率。こ
		の結果に物質のエネルギー吸収係数等から求
		められた係数を乗ずることによって、臓器線
		量率、実効線量当量率等が算出できる。
SUM OF DATA	A. FLUX, DOSE	それぞれの結果を3MeV から低エネルギー領
		域の指定チャネルまで積分した値。

◎印の項目はグラフでも表示される。それぞれのグラフは片対数、またSUM OF DOSEは直線グラフで百分率で示される。

これらの数値のうちアンダーラインのデータを逐次グラフにしたものを作ることが 行われる。

付録 2 逐次近似法による Nal(Tl)シンチレーション スペクトルのアンフォールディングの例

NaI(T1)シンチレーションスペクトロメータにより得られるパルス波高分布を光 子エネルギースペクトルに変換(レスポンス補正)する方法にはいろいろあるが、ここで は3in φ 球型NaI(T1)シンチレータで測定されデータを、レスポンスマトリックス を用い、逐次近似法により解析する例について説明する。

2.1 解析手法の概要

(1) エネルギー校正

エネルギー校正は環境 γ 線の波高分布のうち²⁰⁸ T 1 (2.61 M e V) と⁴⁰ K (1.46 M e V) の全吸収ピークのチャネル数を計算機を用いて判定し、得られた 2 つのピ ークチャネルとそれに対応するエネルギー、および通常"零点"のエネルギーより、 エネルギー校正を行う。

(2) 入力データの調整

パルス波高分布はレスポンスマトリックスの分割に合わせるため 100k e V以下は 20k e Vごとに、 100k e V以上は 100k e Vごとに分割し、補正波高分布とする。 (3) バックグラウンド成分の差し引き

宇宙線成分と検出器固有のバックグラウンドを差し引く。宇宙線成分は、プラスチ ックシンチレーションスペクトロメータ同時計数法により求める。また検出器固有の バックグラウンドは鉄室内における測定値から得られる。

(4) レスポンス補正

パルス波高分布をレスポンスマトリックスを用いて補正し、入射γ線スペクトルに 変換する(この時に使用したレスポンスマトリックスを付第2.1表に示す。また、方 法の詳細については2.2で述べる)。

(5) 線量率の計算

入射 γ 線スペクトルに、それぞれのエネルギーに対応する空気のエネルギー吸収係 数を乗ずることなどにより、レントゲン単位で表したエネルギースペクトルとなる。 また、これを全エネルギー領域について積分することにより、測定場所における照射 線量率が得られる(この方法の詳細については2.3 で述べる)。

2.2 逐次近似法によるエネルギー解析

エネルギーE。の光子が1個、検出器に入射した時、エネルギーEが吸収される確 率をR(E)、E)とする。入射光子のエネルギー分布がX(E)の時、吸収 エネルギーEの分布Y(E)は次式のように表すことができる。

 $Y(E) = \int_{0}^{\infty} R(E_{0}, E) \cdot X(E_{0}) dE \cdots (f(2-1))$

今、入射エネルギーと吸収エネルギーを等間隔にn等分すると、(付2-1)式からE; (j=1、2、……、n)が入射して、吸収されるエネルギーE; (i=1、2、……、n)の分布Y(E;)は、

と表現できる。また、j = 1、2、……、nと幅広いエネルギーのE,が入射した場合には、

となる。(付2-3)式において、n→∞とすれば(付2-1)式となる。

X(E,)(j=1、2、…、n)は検出器に入射する放射線のエネルギースペク トルを表し、Y(E,)(i=1、2、…、n)は検出器で観測されるパルス波高分 布である。R,」はエネルギーE,の入射放射線に対する検出器のレスポンス関数を表 す。

(付2-3)式は、n行n列の正方行列R、n次元列ベクトルX、Yを用いて、次のように表現できる。

 $Y = R \cdot X \cdots (\ddagger 2 - 4)$

つぎに、求めようとするスペクトルの第1近似として、パルス波高分布Y。をとる。

これに、レスポンスマトリックスRをかけたものをY」とする。

つぎに、第2近似のX2として、X1とY1の対応する要素の比にY3の対応する 要素をかけたものとする。すなわちX2の第1要素は、

$$(X_2)_1 = \frac{(X_1)_1}{(Y_1)_1} \cdot (Y_0)_1 \dots (f(2-7))$$

である。X2にさらにRをかけたものをY2とする。

同様に、

このうよな手続きを50回繰り返せば、~10⁻¹の範囲内に収束する。

2.3 線量変換

逐次近似法によりレスポンス補正を行い、入射 γ 線スペクトルから線量変換するには 次式により行う。

$$D = 1.724 \times \frac{\Sigma_{i} (N_{i} \cdot E_{i} \cdot \mu_{i}) \cdot \Delta E}{\pi r^{2} \cdot W \cdot T} (\mu R / h) \dots (f 2 - 10)$$

ここで、

- E : i 番目のヒストグラムの中心エネルギー (e V)
- W : 空気のW値(33.85 e V/ion pair)

- r : シンチレーターの半径(3.81cm)
- μ: : エネルギーE,の光子に対する空気の線減衰係数(cm⁻¹)
- N. : i番目のヒストグラムにはいる入射光子数/ΔE(個/(100k e V・s))
- T : 測定時間(s)

付第 2.1 表 3 in Ø 球形 N a I (T 1) シンチレーション検出器のレスポンスマトリックス

光子の中央エネルギー(MeV)

	0.01	C	0.03	6.(8	0.07	U	3	0.1	5 (). 25	0	35	0	45	0.	55	0. (55	0.7	5	0.8	i (). 95	,	1.05	• 1	. 15	1.	ద	1.	35	1.45	•	. 55	1.0	S	1.75	1	. 85	1.9	5	2. 05	2.	5	2. 25	2. 35	5 2	2. 45	2. 55	2. (5 2	2.75	2.85	2. 9
0 01	1.00	N																																																					
0 03	0.02	9 0	0.78	0.0	012																																																		
J 05	0 00	8 (0.112	2 0.1	187	0.018	l I																																																
יס מ	0 00	8 (0.110	0.	06	0.76:	; 0	i3																																															
00	0.00	2 (0.013	0.	07	0.11.	0.1	6J	0 C	1																																													
0.13	0.02	2 0	0.010	; 0 (212	0.005	0.	1.1	0.8	ы																																													
). 25	0.01	1 0). 03	0. (27	0.020	0.	20	G. 0	58 (). 7'3	4																																											
). 35	0.03	16 (0. 033	0.(D1	0.028	0.	26	0.13	كن (). 01	8 0	. 571	3																																									
). 45	0.02	8 (0.027	0.(27	0. 020	0.	1	0.1.	,C (10	S 0	. 005	5 O	463	i i																																							
. 55	0.01	2 0	0.015	0.0	.8	0 0:0	0.	:8	0.0)) (). W	А О	. 06.	3 0	000	j ()	397																																						
. 6 ,	0.01	6 (0 015	6 C. (115	0.013	ΰ.	15	ο σ.	6 (), Qi	60	02) (U72	: (.	0)5	0	i	0.0	.2																																		
75	0.01	3 (0.013	0 . ().2	0.013	÷.	12	0.0	;2 (). (vi	2 0	. 003	€0.	081	0	059	0.(906	0.2		۲. ۲.	3																																
85	0.01	10	D. OI 1	0.0))]	0.010	0))(;	0. U	3 (). CS	3 O	057	7 C.	0ú I	0	072	0. (050	0.0	10	0. 23	ن نذ). Ji	a																														
у,	0.01	0 0	0.010	0. (XU9	0 000	0.	ъŋ,	0. C	17 (). (4	70	. 617	10	013	/ 0 ,	UC O	0. (250	0.0	45 (0.0	2 () 🕾	:1 0	لت .ل	8																												
00	C. 00	0 6	0.003	0.0	800	0.003	0.	/08	0 0	10 (). 01	1 0	. 042	2 0.	0.13	0	015	0. (264	0.0	8	0 (1)	17 () 01	2 0). 20	0 0	. 0.7	t																										
15	0.00	7 (). 001	0.0	07	0.007	0.	N8	0.03	36 (). 03	6 0	. 037	10.	039	(U	010	0. (211	0.0	51 (0. OC	3 (). 03	4.0). 01	30	. 18	30.	800																									
25	0.00	5 0). 005	0.0	06	0. OOG	0.	X06	0.02	28 (). 03	1 0	. 03/	10	031	0.	051	0 (ວຣ	0.0	i fe	0 0	3 () (C	2 (). OL	10	. 03	7 J.	143	0.0	0:3																							
35	0.00	50	0. 000	0.0	200	0 005	0.	W5	0.03	ప (). 02	6 0	. 021	1 0.	020	• 0.	010	0.1)]0	0.0	انذ	0.03	19 (1. 04	S (). 05	1 0	. 62	4 v.	ŝ	0.	124	0.01	£																					
45	0.00	И	0.00	0. i	05	0.005	0.	5	0. 😋	:3 (). (2	1 0	. 024	1 0	024	. 0	027	0) <u>≻</u> 8	0.0	20	0. Q	12 () 03	п с	1. 01	10	. 051	J 0.	022	. 0, (031	0.12	()	. 017																				
. 55	0.00	4 (0.00	0.0	1-00	0.005	0.	05	0.0	22 (0. 02	2 0	023	3 0.	023	0.	02 1	0.1	024	0.0	28	0. 0;	28 (03	2 (). 03	60	. 0.16	0.0.	0.18	. U. f	022	0 02	1 0	. 118	0.0	15																		
. 65	0.00)4 (0.00-	0.0	001	0.004	0.	004	0.0	20 (). 02	0 0	020	J 0.	020	1 0	(12)	0.1	21	0.0	21	0.02	25 () 02	:c (). 03	0 0	03/	8 C	0:0	0.(017	0. 02	4 0	. 023	0.1	13	0.01	4																
75	0.00	ນ ແ	0, 00;	0.1	003	0.001	G.	10	0.υ	17 (). 01	8 0	018	30	018	0	018	0.	019	0.0	23	0.03	20 (), 02	() () (C	.5 J	02/	8 î	ù31	0.1	ມາ	0 04	1 0	. 021	0.0	22	0.10	60	. 013															
. 80	0.00)3 (0.003	3 0.	ນ 3	0.003	S Q.)01	0 0	16 (0. 01	60	016	δ Ο	016	i 0.	016	0.1	516	0 0	18	0.0	n (1 02	11 (1 02	26	02	3 U	021	0. (038	0 03	• •	. 011	0.0	25	0. 02	3 0	. 098	0.0	14													
. 95	0.00)2 (0.002	2 0.	002	0.003	B 0.	203	0.0	12 (0 01	2 0	01.	3 0	013	1 0	014	0.	016	0.0	16	0.0	9 () 02	25 (). 02	20	02	3 0	024	0	v26	0.03	•	. 036	0.0	41	0.02	4 0	. 026	0.0	90	0. 01	1											
2.05	0.00)2 (0.00	2 0.	002	0.002	2 (203	0.0	11 (0.01	1 0	012	20	012	: 0	013	0	013	0.0	14	0 0	6 (), 01	.8 (1 02	3 0	. 02:	20	022	: 0. (023	0. 0 2	: 1	. 040	0.0	36	0. 03	8 0	. 023	0.0	29	0.08	J O. C	16										
2.15	0.0	02	0.00	20.	002	0 00:	2 O	003	0 0	11	0 01	1 0	01:	20	012	! 0	012	0	013	ე. 0	13	0.0	14 1) OI	.1 (). 01	8 0	02	20	021	0.1	021	0.02	: 1	. 026	0.0	39	0.03	1 0	. 034	0.0	21	0.03	i 0. C	82 (0 014									
2. 25	0.0	02	0 00	20	ω2	0.002	2 -	ມ2	0 0	11	3 0.	1 0	1.01.	2 0	012	2 0	012	0.	012	0 0	13	0.0	13 (3 01	13 () (I	4 0	01	76	C	0	020	0.02	; ۱	022	0.0	26	0.03	8 0	. 033	0.0	32	0 02	0.0	27 (0. 071	0.01	4							
2. 5	0.0	52	0.00	2 0.	002	0.00	2	JA)2	0 0	11	3 (1	1 0	1 01	20	0.2	2 0	012	0.	012	0 0	12	0.0	13 (2 01	-3 (2 01	.3 0	01	30	017	0	07.7	0 02	, ,	. 021	0.0	21	0. 02	60	. 087	0.0	32	0.03	0.0	20 1	0. 025	0.07	8.0). (12						
2.45	60.6	52	0 00	2 0.	002	0 00	24.	W12	υ 0	10	0 0	0 0	1 01	0 0	011	0	011	0.	011	0 0	11	0.0	11	0.01	13 /	3 01	3 0	01	3 0	013	. 0	015	0. 02	.)	020	0.0	18	0. 02	10	. 025	0.0	36	0. 03	0.0	29	0 020	0.02	:6 0). (47)	0. 01	2				
2 55	0.0	02	0 00	2 0.	002	0 00	2 (002	0.0	10	0 01	0 0	1 01	0 0	010) 0	010	0	010	0.0	10	0.0	11	0.01	11 (3 01	1 0	01	10	011	0.	012	0. 01	, 1	0. 023	0.0)19	0.01	90	. 022	0.0	26	0 03	1.0.0	31	0 025	0 02	31 0), 025	0.05	9 0.0	17			
2 (3	5 0.0	02	0.00	20.	002	0.00	2 (002	0.0	10	0.0	10 (). 01	10	01	1 0	011	0	011	0.0	11	0.0	11.7	0.01	11.7	0 01	.1 0	01	10	011	0	011	0 01	ر .), 016	6 0.0	23	0.01	90	. 018	0.0	20	0.02	5 0.0	37	0. 031	0.02	:8 0), (+20	0.02	1 0.0	015 C	3. 02 1		
2 7 !	40.0	0:	0.00	20	002	0 00	2ι	602	0 0	Ú)	0. ((n () 00	0 0	00) 0	000	0	009	Q. C	Ø	0.0	09	3 00	<u>))</u>	0. OC	13 0	. 00	0 Q.	0 0 J) 0.	010	0 01	J	01;	0.(121	0.01	90	619	0.0	21	0. 02	1-0.0	26	0. 039	0.03	11 O) (29	0 02	000	22 (J. 0-11	0 02	2
2 1:	6.0	CI	0. V	2 C	002	0 (,	2.1	ω2	0 0	0)	0 00)9 (1.00	0 U	υ0.) 0	009	С	000	0.0	09	0.0	09	0 U	ימ	0 00	0 00	1 00	S 0	സ) ()	009	0 01	(01	0.0)15	U 02	4 0	019	0.0	17	0.01	7 0.0	21	0. 020	; 0 m	18 0) (31	0. 02	7 0.0	020 (J. 023	0 03	0 0 O
. У	,00	01	0.60	10.	002	0 00	2 (υœ	0 0	80	0 00	38 (). 00	80	00	30	008	0.	008	0.0	08	0.0	08	0 00	98	0.01	0 0	1.01	0 0	010) (),	011	0.01	J	01	0.0	11	0.01	6 0	025	0 0	19	0 01	9 0.0	19	0. 02	0 02	28 0). C 12	0. 03	2 0.0	30 0	0. 020	0 02	200

光子の中央エネルギー(M e V)

付録3 レスポンス関数の計算例

レスポンス関数を構成する成分は、基本的には一次入射光子によるコンプトン分布成分、 KX線エスケープ成分、消滅γ線スペクトル成分および全吸収成分から成るが、実際の検 出器はNaI(T1)結晶のほかにそれを包むケースや光電子増倍管等からの散乱γ線の 影響もあって、厳密には個々の検出器プローブ固有の形状を示す。厳密な意味でのレスポ ンス関数は吸収および散乱成分の含まない標準γ線による実験で求めるのが理想的であろ うが、現実にはそのような線源の入手は不可能であり、たとえ可能であっても通常の実験 環境では高い精度は望めない。一方、このような誤差要因の入らない決定法としては、実 際の検出器の形状で理論的に計算して求めることも一つの方法であり、現実に高い精度の レスポンス関数の決定が可能な段階にある。しかし、ここで述べるスペクトル解析は、精 度を損なわずに単純な計算コードで実施できることを条件にしているため、レスポンス関 数については検出器の形状のモデル化を行い、半実験的な方法で任意のレスポンス関数が 計算できるようにしている。

ここで考えるスペクトル分布は、コンプトン成分、KX線エスケープ成分、消滅γ線ス ペクトル成分、全吸収成分より成るものとして、個々に計算した上で合成する方法で決定 する。その基準化は、全吸収成分とその他の成分を実験的に得たピーク効率と全効率で基 準化する方法で行われている。

近似の概略は次のとおりである。

- コンプトンスペクトル分布
 矩形分布と指数関数による合成
- ② ヨウ素のKX線エスケープによるスペクトル分布
 ヨウ素のKX線の逃げ率を使ってエスケープを含むスペクトル合成
- ③ 消滅γ線によるスペクトル分布
 0.51MeVのレスポンス関数をもとに確率計算で合成
- ④ 全吸収成分

これは δ 関数として、消滅 γ 線による全吸収成分も含む形で合成

上の①~④をさらに重ねることによって完全なレスポンス関数が完成する。付第3.1図、 付第3.2図、付第3.1表に実際に計算された3in Ø 球形NaI(T1)検出器のレスポン ス関数の例を示す。

付第3.1図 レスポンス関数の計算例

付第3.1表 合成により発生させたレスポンス関数の例

(3 in φ球形シンチレータ用、50keV/bin)

ENERGY (40) 3050 YEV - 1000 YEV										
ENERGY (90) $5\lambda20$ KEV - 2000 KEV										
		•••••	······································	**********	************ C		7	Ω	A	10
Δ	1	4	5	4						10
	2.3928E-01	2.3936E-01	2.3946E-01	2.3956E-01	2.3967E-01	2.39808-01	2.39946-01	2.40102-01	2.402/2-01	2.40482-01
10	2.4067E-01	2.4091E-01	2.4117E-01	2.4146E-01	2.41788-01	2.42138-01	2.4252E-01	2.4296E-01	2.4344E-01	2.4397E-01
20	2.4456E-01	2.4522E-01	2.4594E-01	2.4675E-01	2.4764E-01	2.4863E-01	2.4972E-01	2.5093E-01	2.5227E-01	2.5376E-01
30	2.5541E-01	2.5723E-01	2.5925E-01	2.6149E-01	2.63988-01	2.6673E-01	2.69778-01	2.7315E-01	5.6835E-01	8.5604E-01
40	4.83895-01	5.0346E-01	5.2408E-01	5.45868-01	5.6894E-01	5.4610E-01	4.1633E-01	4.0640E-01	1.1145E+00	1.62908+00
50	6.43482-01	6.46798-01	6.5194E-01	6.6651E-01	5.7949E-01	2.6361E-01	6.2622E-02	0.0	0.0	4.6382E+00
· · · · · · · · · · · · · · · · · · ·										
ENERGY (59) 2900 KEV - 2950 KEV										
								5		
	2.4556E-01	2.43668-01	2.4576E-01	2.4588E-01	2.4601E-01	2.4615E-01	2.4631E-01	2.4649E-01	2.4669E-01	2.46906-01
	2.4715E-01	2.47416-01	2.4771E-01	2.4804E-01	2.4840E-01	2.4880E-01	2.4925E-01	2.4974E-01	2.3029E-01	2.5089E-01
	2.5156E-01	2.5231E-01	2.5313E-01	2.5404E-01	2.5505E-01	2.5617E-01	2.57428-01	2.5879E-01	2.6032E-01	2.62008-01
	2.6387E-01	2.6595E-01	2.6824E-01	2.7079E-01	2.7361E-01	2.7673E-01	2.8019E-01	5.65498-01	8.44062-01	4.8456E-01
	5.03776-01	5.24028-01	5.4544E-01	5.6815E-01	5.46558-01	4.2163E-01	4.1258E-01	1.0970E+00	1.5956E+00	6.4372E-01
	6.4774E-01	6.53648-01	6.6874E-01	5.8070E-01	2.3560E-01	6.0546E-02	0.0	0.0	4.6974E+00	
	********	***********	**********	**********	• • • • • • • • • • • • •	**********	*********	**********	**********	
			ENERGY	(58) 2850	KEV - 2900	KEV				
	2.52596-01	2.52/06-01	2.52826-01	2.52952-01	2.53106-01	2.53266-01	2.53452-01	2.3365E-01	2.538/E-01	2.3412E-01
	2.54396-01	2.34702-01	2.35038-01	2.33412-01	2.33826-01	2.30282-01	2.30/88-01	2.3/358-01	2.3/9/E-01	2.38862-01
	2.59426-01	2.802/8-01	2.01212-01	2.82242-01	2.03402-01	2.848/1-01	2.88082-01	2.6/65E-01	2.69398-01	2./1318-01
	2.73442-01	2.75806-01	2.78412-01	2.81312-01	2.84512-01	2.880/1-01	5.63238-01	8.32458-01	4.8595E-01	5.04/98-01
	5.24696-01	5.45/58-01	5.68092-01	5.47792-01	4.2/868-01	4.19/52-01	1.08000000	1.5824E+00	6.448/2-01	6.498/E-01
	6.56386-01	6.72088-01	5.81462-01	2.4/912-01	5.841/6-02	0.0	0.0	4./589E+00		
FNFRGY (57) 2800 XEV - 2850 KEV										
	:									
	2.53718-01	2.5383E-01	2.53966-01	2.54118-01	2.54278-01	2.5446F-01	2.54668-01	2.54885-01	2.55138-01	2.55616-01
	2.55718-01	2 54058-01	2.56428-01	2.56845-01	2.57308-01	2.57818-01	2.58376-01	2.58995-01	2.59495-01	2 40458-01
	2 61306-01	2 42248-01	2 41296-01	2 44446-01	2 45726-01	2 47165-01	2 48715-01	2 70456-01	2 72385-01	2 74526-01
	2.7A88E-01	2 79518-01	2 8241E-01	2 85635-01	2 89205-01	5 5389F-01	A 1342F-01	4 8010E-01	6 986AF-01	5 17856-01
	5. 3838F-01	5 40178-01	5 41006-01	4.25996-01	4 1858F-01	1 05376+00	1 51925+00	A 3448E-01	A 41918-01	A 4905E-01
	A ALAGE-01	5 71118-01	2 19276-01	5 42358-02	0.0	0.0	4 83305+00	0.50000 0.	0.41710 01	0.4/0/2/01
	0.040/0 01	2.1.2110 01			0.0	0.0	4.05302.00			
ENERGY (56) 2750 KEV - 2800 KEV										
	2.6571E-01	2.65858-01	2.6601E-01	2.6618E-01	2.66378-01	2.6658E-01	2.6682E-01	2.6708E-01	2.67368-01	2.67688-01
	2.6804E-01	2.68438-01	2.6886E-01	2.69348-01	2.69878-01	2.70468-01	2.71126-01	2.71848-01	2.72648-01	2.73538-01
	2.74518-01	2.75608-01	2.76818-01	2.7815E-01	2.79648-01	2.8128E-01	28310E-01	2.85128-01	2.8735E-01	2.89838-01
	2.92578-01	2.95618-01	2.98988-01	3.02718-01	5.56858-01	8.06658-01	4.87048-01	5.05128-01	5.24246-01	5.44518-01
	5.66068-01	5.4839E-01	4.3878E-01	4.32536-01	1.0425E+00	1.49128+00	6.44998-01	6.5131E-01	6.5959E-01	6.7638E-01

5.7974E-01 2.3156E-01 5.4001E-02 0.0 0.0 4.8944E+00

ENERGY (55) 2700 KEV - 2750 KEV 2.7337E-01 2.7353E-01 2.7370E-01 2.7390E-01 2.7412E-01 2.7436E-01 2.7463E-01 2.7492E-01 2.7525E-01 2.7561E-01 2.7601E-01 2.7646E-01 2.7695E-01 2.7750E-01 2.7811E-01 2.7878E-01 2.7952E-01 2.8035E-01 2.8126E-01 2.8227E-01 2.83398-01 2.8463E-01 2.8601E-01 2.8753E-01 2.8922E-01 2.9109E-01 2.9316E-01 2.9546E-01 2.9801E-01 3.0082E-01 3.0395E-01 3.0741E-01 3.1124E-01 5.5451E-01 7.9427E-01 4.8861E-01 5.0630E-01 5.2504E-01 5.4492E-01 5.6608E-01 5.4981E-01 4.4556E-01 4.4030E-01 1.0243E+00 1.4555E+00 6.4633E-01 6.5348E-01 6.6263E-01 6.8005E-01 5.8081E-01 2.2261E-01 5.1715E-02 0.0 0.0 4.9563E+00 ENERGY (54) 2650 KEV - 2700 KEV 2.80266-01 2.80446-01 2.80646-01 2.80866-01 2.81116-01 2.81386-01 2.81696-01 2.82026-01 2.82396-01 2.82816-01 2.8326E-01 2.8377E-01 2.8433E-01 2.8495E-01 2.8563E-01 2.8640E-01 2.8724E-01 2.8817E-01 2.8921E-01 2.9036E-01 2.9163E-01 2.9303E-01 2.9459E-01 2.9632E-01 2.9824E-01 3.0036E-01 3.0271E-01 3.0532E-01 3.0820E-01 3.1140E-01 3.14948-01 3.18868-01 5.51018-01 7.80488-01 4.89058-01 5.06348-01 5.24658-01 5.44128-01 5.64858-01 5.49968-01 4.5116E-01 4.4688E-01 1.0043E+00 1.4176E+00 6.4618E-01 6.5412E-01 6.6409E-01 6.8208E-01 5.8144E-01 2.1384E-01 4.9378E-02 0.0 0.0 5.04346+00 ENERGY (53) 2600 KEV - 2650 KEV 2.9194E-01 2.9215E-01 2.9238E-01 2.9264E-01 2.9292E-01 2.9324E-01 2.9359E-01 2.9397E-01 2.9440E-01 2.9487E-01 2.9540E-01 2.9598E-01 2.9663E-01 2.9734E-01 2.9813E-01 2.9901E-01 2.9998E-01 3.0106E-01 3.0225E-01 3.0358E-01 3.0504E-01 3.0666E-01 3.0846E-01 3.1045E-01 3.1266E-01 3.1511E-01 3.1782E-01 3.2082E-01 3.2414E-01 3.2783E-01 3.3191E-01 5.5277E-01 7.7181E-01 4.9501E-01 5.1197E-01 5.2998E-01 5.4913E-01 5.6956E-01 5.5624E-01 4.6317E-01 4.6007E-01 9.9051E-01 1.3858E+00 6.5317E-01 6.6220E-01 6.7331E-01 6.9223E-01 5.8636E-01 2.0543E-01 4.6990E-02 0.0 0.0 5.1177E+00 ENERGY (52) 2550 KEV - 2600 KEV 2.9869E-01 2.9892E-01 2.9919E-01 2.9948E-01 2.9980E-01 3.0016E-01 3.0055E-01 3.0099E-01 3.0147E-01 3.0201E-01 3.0260E-01 3.0326E-01 3.0399E-01 3.0480E-01 3.0570E-01 3.0669E-01 3.0779E-01 3.0901E-01 3.1036E-01 3.1186E-01 3.1352E-01 3.1535E-01 3.1739E-01 3.1964E-01 3.2214E-01 3.2491E-01 3.2798E-01 3.3138E-01 3.3514E-01 3.3931E-01 5.4858E-01 7.5687E-01 4.9491E-01 5.1143E-01 5.2899E-01 5.4769E-01 5.6767E-01 5.5578E-01 4.6837E-01 4.6628E-01 9.69008-01 1.34568+00 6.52308-01 6.62138-01 6.74078-01 6.93558-01 5.85338-01 1.95488-01 4.45538-02 0.0 0 0 5.20396+00 ENERGY (51) 2500 KEV - 2550 KEV 3.0715E-01 3.0742E-01 3.0771E-01 3.0804E-01 3.0841E-01 3.0882E-01 3.0926E-01 3.0976E-01 3.1031E-01 3.1092E-01 3.1160E-01 3.1235E-01 3.1318E-01 3.1410E-01 3.1512E-01 3.1625E-01 3.1750E-01 3.1889E-01 3.2043E-01 3.2213E-01 3.2402E-01 3.2611E-01 3.2842E-01 3.3099E-01 3.3383E-01 3.3698E-01 3.4047E-01 3.4433E-01 3.4861E-01 5.4609E-01 7.4345E-01 4.9664E-01 5.1275E-01 5.2989E-01 5.4818E-01 5.6773E-01 5.5735E-01 4.7577E-01 4.7476E-01 9.4930E-01 1.3069E+00 6.5379E-01 6.6453E-01 6.7741E-01 6.9758E-01 5.8570E-01 1.8601E-01 4.2067E-02 0.0 0.0 5.29228+00 ENERGY (50) 2450 KEV - 2500 KEV

3.1753E-01 3.1783E-01 3.1817E-01 3.1855E-01 3.1897E-01 3.1943E-01 3.1995E-01 3.2052E-01 3.2115E-01 3.2184E-01 3.2262E-01 3.2347E-01 3.2442E-01 3.2548E-01 3.2664E-01 3.2793E-01 3.2936E-01 3.3095E-01 3.3270E-01 3.3465E-01 3.3681E-01 3.3919E-01 3.4184E-01 3.4477E-01 3.4802E-01 3.5162E-01 3.5561E-01 3.6002E-01 5.4552E-01 7.3177E-01 5.0043E-01 5.1615E-01 5.3290E-01 5.5080E-01 5.6997E-01 5.6117E-01 4.8558E-01 4.8573E-01 9.3166E-01 1.2700E+00 6.5786E-01 6.6961E-01 6.8356E-01 7.0454E-01 5.8986E-01 1.7796E-01 3.9536E-02 0.0 5.38238+00 0.0 ENERGY (49) 2400 KEV - 2450 KEV 3.2860E-01 3.2896E-01 3.2935E-01 3.2978E-01 3.3026E-01 3.3079E-01 3.3137E-01 3.3202E-01 3.3275E-01 3.3355E-01 3.3443E-01 3.3541E-01 3.3650E-01 3.3770E-01 3.3904E-01 3.4051E-01 3.4215E-01 3.4397E-01 3.4598E-01 3.4820E-01 3.5067E-01 3.5340E-01 3.5643E-01 3.5979E-01 3.6351E-01 3.6763E-01 3.7219E-01 5.4552E-01 7.2047E-01 5.0487E-01 5.2021E-01 5.3658E-01 5.5410E-01 5.7289E-01 5.6572E-01 4.9625E-01 4.9761E-01 9.1447E-01 1.2332E+00 6.6281E-01 6.7563E-01 6.9069E-01 7.1254E-01 5.9411E-01 1.6748E-01 3.6961E-02 0.0 0.0 5 47445+00 ENERGY (48) 2350 KEV - 2400 KEV 3.42548-01 3.42948-01 3.43398-01 3.43898-01 3.44448-01 3.45068-01 3.45738-01 3.46488-01 3.47318-01 3.48248-01 3.4926E-01 3.5039E-01 3.5164E-01 3.5303E-01 3.5457E-01 3.5627E-01 3.5816E-01 3.6025E-01 3.6257E-01 3.6514E-01 3.8798E-01 3.7113E-01 3.7463E-01 3.7850E-01 3.8278E-01 3.8753E-01 5.4856E-01 7.1207E-01 5.1251E-01 5.2751E-01 5.4356E-01 5.6077E-01 5.7926E-01 5.7383E-01 5.1065E-01 5.1334E-01 9.0083E-01 1.1997E+00 6.7190E-01 6.8596F-01 7.0233E-01 7.2526E-01 5.9994E-01 1.5751E-01 3.4345E-02 0.0 0.0 5.5719E+00 ENERGY (47) 2300 KEV - 2350 KEV 3.5519E-01 3.5566E-01 3.5617E-01 3.5675E-01 3.5738E-01 3.5808E-01 3.5886E-01 3.5972E-01 3.6067E-01 3.6172E-01 3.6289E-01 3.6419E-01 3.6563E-01 3.6722E-01 3.6898E-01 3.7093E-01 3.7310E-01 3.7550E-01 3.7815E-01 3.8109E-01 3.8435E-01 3.8797E-01 3.9197E-01 3.9640E-01 4.0132E-01 5.4986E-01 7.0172E-01 5.1839E-01 5.3302E-01 5.4870E-01 5.6554E-01 5.8368E-01 5.7995E-01 5.2310E-01 5.2707E-01 8.8472E-01 1.1634E+00 6.7864E-01 6.9385E-01 7.1143E-01 7.3532E-01 6.0697E-01 1.4806E-01 3.1692E-02 0.0 0.0 5.6750E+00 ENERGY (46) 2250 KEV - 2300 KEV 3.6377E-01 3.6430E-01 3.6488E-01 3.6553E-01 3.6624E-01 3.6794E-01 3.6791E-01 3.6889E-01 3.6997E-01 3.7116E-01 3.7249E-01 3.7395E-01 3.7558E-01 3.7738E-01 3.7938E-01 3.8159E-01 3.8404E-01 3.8675E-01 3.8976E-01 3.9309E-01 3.9678E-01 4.0087E-01 4.0540E-01 4.1042E-01 5.4626E-01 6.8627E-01 5.1929E-01 5.3345E-01 5.4866E-01 5.6502E-01 5.8267E-01 5.8054E-01 5.2994E-01 5.3504E-01 8.6234E-01 1.1204E+00 6.7893E-01 6.9506E-01 7.1361E-01 7.3817E-01 6.8647E-01 1.9133E-01 2.9007E-02 0.0 0.0 5.7892E+00 ENERGY (45) 2200 KEV - 2250 KEV 3.7869E-01 3.7930E-01 3.7997E-01 3.8071E-01 3.8154E-01 3.8245E-01 3.8346E-01 3.8458E-01 3.8582E-01 3.8720E-01 3.8872E-01 3.9041E-01 3.9228E-01 3.9436E-01 3.9665E-01 3.9920E-01 4.0202E-01 4.0514E-01 4.0860E-01 4.1243E-01 4.1668E-01 4.2139E-01 4.2660E-01 5.4972E-01 6.7784E-01 5.2749E-01 5.4131E-01 5.5619E-01 5.7223E-01 5.8957E-01 5.8923E-01 5.4517E-01 5.5165E-01 8.4859E-01 1.0860E+00 6.8867E-01 7.0609E-01 7.2600E-01 7.5168E-01 6.9750E-01 1,82876-01 2,62948-02 0,0 0,0 5,90098+00

ENERGY (44) 2150 KEV - 2200 KEV 3.8920E-01 3.8989E-01 3.9065E-01 3.9149E-01 3.9243E-01 3.9347E-01 3.9461E-01 3.9589E-01 3.9730E-01 3.98886E-01 4.0059E-01 4.0251E-01 4.0463E-01 4.0699E-01 4.0960E-01 4.1249E-01 4.1569E-01 4.1924E-01 4.2317E-01 4.2752E-01 4.3235E-01 4.3769E-01 5.4795E-01 6.6400E-01 5.3032E-01 5.4370E-01 5.5813E-01 5.7374E-01 5.9063E-01 5.9196E-01 5.5432E-01 5.6201E-01 8.2821E-01 1.0446E+00 6.9147E-01 7.0992E-01 7.3091E-01 7.5739E-01 7.0082E-01 1.7265E-01 6.02488100 2.35598-02 0.0 0.0 ENERGY (43) 2100 KEV - 2150 KEV 4.0907E-01 4.0987E-01 4.1075E-01 4.1173E-01 4.1282E-01 4.1402E-01 4.1536E-01 4.1683E-01 4.1847E-01 4.2028E-01 4.2229E-01 4.2452E-01 4.2699E-01 4.2972E-01 4.3275E-01 4.3610E-01 4.3982E-01 4.4393E-01 4.4850E-01 4.5355E-01 4.5915E-01 5.5662E-01 6.6068E-01 5.4393E-01 5.5705E-01 5.7124E-01 5.8662E-01 6.0332E-01 6.0660E-01 5.7571E-01 5.8497E-01 8.2068E-01 1.0163E+00 7.0808E-01 7.2808E-01 7.5072E-01 7.7863E-01 7.2006E-01 1.6805E-01 2.0810E-02 0.0 6.14228+00 0 0 ENERGY (42) 2050 KEV - 2100 KEV 4.2234E-01 4.2325E-01 4.2424E-01 4.2538E-01 4.2642E-01 4.2799E-01 4.2951E-01 4.3120E-01 4.3304E-01 4.3513E-01 4.3742E-01 4.3996E-01 4.4277E-01 4.4589E-01 4.4934E-01 4.5317E-01 4.5741E-01 4.6210E-01 4.6730E-01 4.7307E-01 5,5765E-01 6,4956E-01 5,4965E-01 5,6238E-01 5,7618E-01 5,9118E-01 6,0750E-01 6,1252E-01 5,8817E-01 5,9874E-01 8.0367E-01 9.7814E-01 7.1456E-01 7.3573E-01 7.5960E-01 7.8849E-01 7.2779E-01 1.5878E-01 1.8054E-02 0.0 0.0 6.2761E+00 ENERGY (41) 2000 KEV - 2050 KEV ***** 4.3646E-01 4.3750E-01 4.3865E-01 4.3993E-01 4.4134E-01 4.4291E-01 4.4464E-01 4.4656E-01 4.4869E-01 4.5105E-01 4.5367E-01 4.5656E-01 4.5977E-01 4.6333E-01 4.6727E-01 4.7163E-01 4.7647E-01 4.8182E-01 4.8776E-01 5.5951E-01 6.3927E-01 5.5619E-01 5.6853E-01 5.8196E-01 5.9658E-01 6.1254E-01 6.1932E-01 6.0152E-01 6.1342E-01 7.8768E-01 9.4100E-01 7.2203E-01 7.4441E-01 7.6954E-01 7.9944E-01 7.3698E-01 1.5210E-01 1.5301E-02 0.0 0 0 6.4158E+00 ENERGY (40) 1950 KEV - 2000 KEV 4.5415E-01 4.5534E-01 4.5667E-01 4.5813E-01 4.5975E-01 4.6155E-01 4.6354E-01 4.6575E-01 4.6820E-01 4.7091E-01 4.7391E-01 4.7724E-01 4.8092E-01 4.8500E-01 4.8953E-01 4.9454E-01 5.0009E-01 5.0624E-01 5.6531E-01 6.3303E-01 5.6675E-01 5.7878E-01 5.9190E-01 6.0625E-01 6.2193E-01 6.3056E-01 6.1939E-01 6.3274E-01 7.7673E-01 9.0909E-01 6.5587E+00 7.3468E-01 7.5845E-01 7.8506E-01 8.1619E-01 7.5327E-01 1.4434E-01 1.2563E-02 0.0 0.0 ENERGY (39) 1900 KEV - 1950 KEV 4.6735E-01 4.8870E-01 4.7021E-01 4.7187E-01 4.7371E-01 4.7576E-01 4.7802E-01 4.8053E-01 4.8331E-01 4.8639E-01 4.8980E-01 4.9358E-01 4.9776E-01 5.0240E-01 5.0754E-01 5.1324E-01 5.1955E-01 5.6602E-01 6.2173E-01 5.7200E-01 5.8363E-01 5.9637E-01 6.1033E-01 6.2563E-01 6.3595E-01 6.3118E-01 6.4581E-01 7.5974E-01 8.7109E-01 7.4057E-01 7.6546E-01 7.9326E-01 8.2533E-01 7.5802E-01 1.3448E-01 9.8509E-03 0.0 .0. 6.7157E+00

ENERGY (38) 1850 KEV - 1963 KEV

4.8545E-01 4.8701E-01 4.8873E-01 4.9043E-01 4.9275E-01 4.9509E-01 4.9748E-01 5.0055E-01 5.0373E-01 5.0724E-01 5.1550E-01 5.2029E-01 5.2561E-01 5.3149E-01 5.3801E-01 5.7221E-01 6.1613E-01 5.8277E-01 5.9411E-01 6.0556E-01 6.2024E-01 6.3529E-01 6.4741E-01 6.4909E-01 6.6514E-01 7.4976E-01 8.4054E-01 7.5344E-01 7.7969E-01 8.0894E-01 8.423E-01 7.376E-01 1.3005E-01 7.1802E-03 0.0 0.0

ENERGY (37) 1800 KEV - 1850 KEV

 5.0561E-01
 5.0739E-01
 5.1156E-01
 5.1398E-01
 5.1667E-01
 5.1965E-01
 5.2295E-01
 5.2661E-01
 5.3066E-01

 5.1515E-01
 5.4012E-01
 5.4563E-01
 5.5174E-01
 5.5850E-01
 6.4317E-01
 5.9586E-01
 6.0696E-01
 6.1918E-01

 6.3267E-01
 6.4754E-01
 6.6148E-01
 6.6954E-01
 6.8707E-01
 7.4323E-01
 8.1391E-01
 7.6939E-01
 7.9712E-01
 8.2792E-01

 8.6257E-01
 7.4979E-01
 1.5274E-03
 0.0
 0.0
 7.6394E+00
 7.9712E-01
 8.2792E-01

ENERGY (36) 1750 KEV - 1800 KEV

5.2398E-01 5.2601E-01 5.2827E-01 5.3077E-01 5.3354E-01 5.3641E-01 5.4001E-01 5.4378E-01 5.4796E-01 5.5258E-01 5.771E-01 5.6339E-01 5.6765E-01 5.7765E-01 6.083E-01 6.0676E-01 6.1758E-01 6.2955E-01 6.4278E-01 6.5742E-01 6.7307E-01 6.8725E-01 7.3475E-01 7.8572E-01 7.8241E-01 8.1144E-01 8.4364E-01 8.7947E-01 8.07047E-01 7.2172E+00

ENERGY (35) 1700 KEV - 1750 KEV

5.2883E-01 5.3110E-01 5.3361E-01 5.3639E-01 5.3948E-01 5.4289E-01 5.4648E-01 5.5087E-01 5.5551E-01 5.6066E-01 5.6636E-01 5.7268E-01 5.7968E-01 5.8763E-01 5.9602E-01 6.0556E-01 6.1609E-01 6.2777E-01 6.4072E-01 6.5506E-01 6.7096E-01 6.8856E-01 7.0807E-01 7.2968E-01 7.5363E-01 7.8016E-01 8.0955E-01 8.4212E-01 8.7820E-01 8.0356E-01 1.1127E-01 0.0 0.0 7.4187E+00

ENERGY (34) 1650 KEV - 1700 KEV

 5.4467E-01
 5.4724E-01
 5.5009E-01
 5.5325E-01
 5.5674E-01
 5.6062E-01
 5.64946E-01
 5.6966E-01
 5.7493E-01
 5.8077E-01

 5.8724E-01
 5.9440E-01
 6.0234E-01
 6.1114E-01
 6.2089E-01
 6.3168E-01
 6.4365E-01
 6.5890E-01
 6.7159E-01
 6.8766E-01

 7.0588E-01
 7.4798E-01
 7.7250E-01
 7.9966E-01
 8.2975E-01
 8.6309E-01
 9.0004E-01
 8.2301E-01
 1.1478E-01

 0.0
 0.0
 7.6114E+00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

ENERGY (33) 1600 KEV - 1550 KEV

 5.7140E-01
 5.7437E-01
 5.7766E-01
 5.8130E-01
 5.8534E-01
 5.8982E-01
 3.9477E-01
 6.0026E-01
 6.0635E-01
 6.1309E-01

 6.2056E-01
 6.2883E-01
 6.3800E-01
 6.4816E-01
 6.5941E-01
 6.7188E-01
 6.8569E-01
 7.0100E-01
 7.1766E-01
 7.3675E-01

 7.5756E-01
 7.8063E-01
 8.0618E-01
 8.3449E-01
 8.6585E-01
 9.0060E-01
 9.3911E-01
 8.5969E-01
 1.1919E-01
 0.0

 0.0
 0.0
 7.8017E+00
 7.8017E+00
 7.8017E+00
 9.0060E-01
 9.3911E-01
 8.5969E-01
 1.1919E-01
 0.0

ENERGY (32) 1550 KEV - 1600 KEV

5.8507E-01 5.8841E-01 5.9212E-01 5.9622E-01 6.0077E-01 6.0581E-01 6.1139E-01 6.1758E-01 6.2443E-01 6.3203E-01 6.4044E-01 6.4976E-01 6.6009E-01 6.7153E-01 6.8421E-01 6.9825E-01 7.1382E-01 7.3106E-01 7.5016E-01 7.7132E-01 7.9477E-01 8.2075E-01 8.4953E-01 8.8142E-01 9.1676E-01 9.5590E-01 9.5770E-01 1.6188E-01 0.0 0 0 8.0219E+00 0.0 ENERGY (31) 1500 KEV - 1550 KEV 6.0178E-01 6.0556E-01 6.0975E-01 6.1439E-01 6.1953E-01 6.2523E-01 6.3154E-01 6.3854E-01 6.4629E-01 6.5487E-01 6.6438E-01 6.7492E-01 6.8660E-01 6.9953E-01 7.1387E-01 7.2975E-01 7.4734E-01 7.6683E-01 7.8843E-01 8.1236E-01 8.3887E-01 8.6824E-01 9.0078E-01 9.3684E-01 9.7678E-01 9.7901E-01 2.5249E-01 0.0 0.0 0.0 8 25096+00 ENERGY (30) 1450 KEV - 1500 KEV 6.1861E-01 6.2288E-01 6.2762E-01 6.3286E-01 6.3867E-01 6.4511E-01 6.5224E-01 6.6014E-01 6.6890E-01 6.7860E-01 6.8935E-01 7.0125E-01 7.1445E-01 7.2906E-01 7.4526E-01 7.6320E-01 7.8308E-01 8.0510E-01 8.2950E-01 8.5654E-01 8.4957E+00 8.8649E-01 9.1968E-01 9.5645E-01 9.9719E-01 9.9891E-01 2.5440E-01 0.0 0.0 0.0 ENERGY (29) 1400 KEV - 1450 KEV 6.4807E-01 6.5298E-01 6.5843E-01 6.6446E-01 6.7115E-01 6.7856E-01 6.8676E-01 6.9585E-01 7.0593E-01 7.1709E-01 7.2945E-01 7.4315E-01 7.5833E-01 7.7514E-01 7.9378E-01 8.1442E-01 8.3729E-01 8.6263E-01 8.9070E-01 9.2181E-01 9.5627E-01 9.9445E-01 1.0368E+00 1.0379E+00 2.6288E-01 0.0 0.0 0.0 8.7407E+00 ENERGY (28) 1350 KEV - 1400 KEV 6.4113E-01 6.4765E-01 6.5489E-01 6.6290E-01 6.7179E-01 6.8162E-01 6.9252E-01 7.0460E-01 7.1798E-01 7.3281E-01 7.4923E-01 7.6743E-01 7.8760E-01 8.0994E-01 8.3469E-01 8.6211E-01 8.9249E-01 9.2615E-01 9.6345E-01 1.0048E+00 1.0505E+00 1.1013E+00 1.1088E+00 2.8075E-01 0.0 0.0 0.0 9.0165E+00 ENERGY (27) 1300 KEV - 1350 KEV 6.7526E-01 6.8213E-01 6.8976E-01 6.9820E-01 7.0755E-01 7.1791E-01 7.2939E-01 7.4211E-01 7.5621E-01 7.7182E-01 7.8912E-01 8.0829E-01 8.2953E-01 8.5306E-01 8.7912E-01 9.0801E-01 9.4001E-01 9.7546E-01 1.0147E+00 1.0583E+00 1.1065E+00 1.1118E+00 2.8505E-01 0.0 0.0 0.0 9.3084 €+00 ENERGY (26) 1250 KEV - 1300 KEV 7.1313E-01 7.2040E-01 7.2844E-01 7.3736E-01 7.4724E-01 7.5818E-01 7.7031E-01 7.8374E-01 7.9862E-01 8.1511E-01 8.3338E-01 8.5363E-01 8.7605E-01 9.0090E-01 9.2843E-01 9.5894E-01 9.9273E-01 1.0302E+00 1.0717E+00 1.1176E+00 1,11946+00 2,86816-01 0.0 0.0 0.0 9.61956+00
ENERGY (25) 1200 KEV - 1250 KEV 7.5603E-01 7.6374E-01 7.7227E-01 7.8172E-01 7.9219E-01 8.0379E-01 8.1665E-01 8.3089E-01 8.4667E-01 8.6415E-01 8.8352E-01 9.0498E-01 9.2876E-01 9.5510E-01 9.8429E-01 1.0166E+00 1.0525E+00 1.0921E+00 1.1361E+00 1.1346E+00 2.8872E-01 0.0 0 0 0 0 9.9511F+00 ENERGY (24) 1150 KEV - 1200 KEV 8.0108E-01 8.0923E-01 8.1827E-01 8.2829E-01 8.3938E-01 8.5168E-01 8.6530E-01 8.8039E-01 8.9711E-01 9.1563E-01 9.3616E-01 9.5890E-01 9.8409E-01 1.0120E+00 1.0429E+00 1.0772E+00 1.1152E+00 1.1572E+00 1.2038E+00 3.9091E-01 0.0 0.0 1.03106+01 0 0 ENERGY (23) 1100 KEV - 1150 KEV _____ 8.7502E-01 8.8394E-01 8.9381E-01 9.0475E-01 9.1687E-01 9.3030E-01 9.4517E-01 9.6166E-01 9.7992E-01 1.0002E+00 1.02268+00 1.04748+00 1.07498+00 1.10548+00 1.13928+00 1.17668+00 1.21818+00 1.26408+00 5.16188-01 0.0 0.0 0.0 1.0674E+01 ENERGY (22) 1050 KEV - 1100 KEV 9.1611E-01 9.2544E-01 9.3578E-01 9.4723E-01 9.5992E-01 9.7398E-01 9.8956E-01 1.0068E+00 1.0259E+00 1.0471E+00 1.0706E+00 1.0966E+00 1.1254E+00 1.1573E+00 1.1927E+00 1.2319E+00 1.2753E+00 5.1635E-01 0.0 0.0 0 0 1.1115E+01 ENERGY (21) 1000 KEV - 1050 KEV 9.85865-01 9.95905-01 1.00705+00 1.01945+00 1.03305+00 1.04815+00 1.06495+00 1.08355+00 1.10405+00 1.12685+00 1.1521E+00 1.1801E+00 1.2111E+00 1.2454E+00 1.2835E+00 1.3257E+00 5.3825E-01 0.0 0.0 0.0 1.1577E+01 ENERGY (20) 950 KEV - 1000 KEV 1.0598 +00 1.0706E+00 1.0826E+00 1.0958E+00 1.1105E+00 1.1268E+00 1.1448E+00 1.1648E+00 1.1869E+00 1.2114E+00 1.2385E+00 1.2686E+00 1.3020E+00 1.3389E+00 1.3798E+00 5.5062E-01 0.0 0.0 0.0 1.2097E+01 ENERGY (19) 900 KEV - 950 KEV 1.1346E+00 1.1462E+00 1.1590E+00 1.1732E+00 1.1889E+00 1.2063E+00 1.2256E+00 1.2470E+00 1.2707E+00 1.2969E+00 1.3260E+00 1.3582E+00 1.3939E+00 1.4334E+00 6.9931E-01 0.0 0.0 0.0 1.2693E+01 *****

يت ا

÷

Þ

ENERGY (18) 850 KEV - 900 KEV 1.1879E+00 1.2000E+00 1.2134E+00 1.2282E+00 1.2447E+00 1.2629E+00 1.2831E+00 1.3055E+00 1.3305E+00 1.3578E+00 1.38826+00 1.42196+00 1.45936+00 8.88396-01 0.0 0.0 0.0 1.3506E+01 ENERGY (17) BOO KEV - 850 KEV 1.2782E+00 1.2912E+00 1.3056E+00 1.3216E+00 1.3393E+00 1.3589E+00 1.3807E+00 1.4047E+00 1.4314E+00 1.4610E+00 1.49372+00 1.5300E+00 9.2927E-01 0.0 1.42898+01 0.0 0.0 ENERGY (16) 750 KEV - 800 KEV 1.38226+00 1.39636+00 1.41196+00 1.42916+00 1.44836+00 1.46956+00 1.49306+00 1.51906+00 1.54796+00 1.57996+00 1.6153E+00 9.7867E-01 0.0 0.0 0.0 1.5160E+01 ENERGY (15) 700 KEV - 750 KEV 1.5022E+00 1.5175E+00 1.5345E+00 1.5533E+00 1.5741E+00 1.5971E+00 1.6227E+00 1.6510E+00 1.6823E+00 1.7170E+00 1.32208+00 0.0 0.0 0.0 1.6135E+01 ENERGY (14) 650 KEV - 700 KEV 1.6406E+00 1.6573E+00 1.6758E+00 1.6963E+00 1.7190E+00 1.7442E+00 1.7721E+00 1.8030E+00 1.8372E+00 1.4116E+00 7.3296E-02 0.0 0.0 1.7245E+01 ENERGY (13) 600 KEV - 650 KEV 1.8002E+00 1.8185E+00 1.8388E+00 1.8614E+00 1.8863E+00 1.9139E+00 1.9445E+00 1.9784E+00 1.6009E+00 7.8516E-02 0.0 1.8509E+01 0.0 ENERGY (12) 550 KEV - 600 KEV 1.9827E+00 2.0029E+00 2.0253E+00 2.0501E+00 2.0775E+00 2.1080E+00 2.1417E+00 1.9072E+00 2.5606E-01 0.0 0.0 1.9969E+01 ENERGY (11) 500 KEV - 550 KEV 2.18822+00 2.21052+00 2.23512+00 2.26252+00 2.29282+00 2.32642+00 2.16772+00 2.77532-01 0.0 0 0 2.1675€+01

ENERGY (10) 450 KEV - 500 KEV

2.4109E+00 2.4355E+00 2.4627E+00 2.4928E+00 2.5262E+00 2.4562E+00 6.0662E-01 0.0 2.3703E+01
ENERGY (9) 400 KEV - 450 KEV
2.6449E+00 2.6718E+00 2.7017E+00 2.7347E+00 2.7714E+00 8.8260E-01 0.0 0.0 2.6044E+01
EHERGY (8) 350 KEV - 400 KEV
2.8657E+00 2.8749E+00 2.9273E+00 2.9631E+00 1.3043E+00 0.0 0.0 2.8742E+01
ENERGY (7) 300 KEV - 350 KEV
•••••••••••••••••••••••••••••••••••••••
3.0209E+00 3.0517E+00 3.0858E+00 1.9885E+00 0.0 0.0 3.1808E+01
FNERGY (&) 250 KEV - 300 KEV
3.0287E+00 3.0596E+00 2.4769E+00 1.2630E-01 0.0 3.5062E+01
ENERGY (S) 200 KEV - 250 KEV
2.7496E+00 2.6739E+00 4.6531E-01 0.0 3.8185E+01
ENERGY (4) 150 KEV - 200 KEV
2.0801E+00 8.7951E-01 3.5822E-01 4.0634E+01
ENERGY (3) 100 KEV - 150 KEV
7.1101E-01 1.1478E+00 4.3048E+01
ENERGY (2) 50 KEV - 100 KEV
4.5812E+00 4.1723E+01

付録4 線量換算係数

1. 照射線量および空気吸収線量への換算係数

スペクトロメータによって得られた γ 線の入射スペクトルから照射線量を求めるには、 エネルギーの関数としての光子フルエンス – 照射線量換算係数を必要とする。空気のW 値を 33.85 e V としたときのこの換算係数を付第4.1 表に示す。なお、照射線量はやが て廃止され、空気吸収線量又は空気カーマに移行する気運にあるので、荷電粒子平衡が 成立する場合の空気吸収線量への換算係数も同表に加えた。

2. 実効線量当量および1cm深部線量当量への換算係数

昭和63年の法令改正により線量限度は実効線量当量および組織線量当量で定められる こととなった。環境モニタリングにおいても空気吸収線量又は実効線量当量で評価が行 われることになったので、光子フルエンスからこれらの線量への換算係数を付第4.2表 に示す。実効線量当量のデータは、成人の人体ファントムを用いた計算結果のうち、環 境放射線の方向分布を考慮して、1CRP Publ.51に示されている等方照射の場合のデータ を掲げた。

付第4.3表に、おなじく等方照射の場合の照射線量から実効線量当量への換算係数を示す。ここに見られるように rem (=10⁻²Sv)で表された実効線量当量は広いエネル ギー範囲にわたって、Rで表された照射線量のおよそ 0.7倍である。

通常の屋内、屋外の環境においては散乱線が存在するため、100keV~300keVのエネル ギーの放射線が多く、このためICRUの周辺線量当量率は照射線量率に対して大き目 に、実効線量当量率(回転照射)は小さ目になる。エネルギースペクトルから得られる この係数は、それぞれおよそ105%、および65%である。

付第4.1表

光子エネルギー	空気吸収線量への換算係数	照射線量への換算係数
MeV	10 ⁻¹² Gy cm ²	10 ⁻¹ º R cd
1. 0 10 ⁻²	7. 43	8.51
1. 5	3. 12	3.57
2. 0	1. 68	1.92
3. 0	0. 721	0.826
4. 0	0. 29	0. 49
5. 0	0. 23	0. 370
6. 0	0. 89	0. 331
8. 0	0. 307	0. 352
1. 0 10 ⁻¹	0. 371	0. 425
1. 5	0. 599	0. 686
2. 0	0. 856	0. 981
3. 0	1. 38	1. 58
4. 0	1. 89	2. 17
5. 0	2. 38	2. 73
6. 0	2. 84	3. 25
8. 0	3. 69	4. 23
1.0 10°	4. 47	5. 12
1.5	6. 12	7. 01
2.0	7. 50	8. 59
3.0	9. 87	11. 3
4. 0	12. 0	13. 8
5. 0	13. 9	15. 9
6. 0	15. 8	18. 1
8. 0	19. 5	22. 3
1.0 10'	23. 1	26. 5

光子フルエンスから空気吸収線量および照射線量への換算係数 (空気のW値を 33.85 e Vとする)

付第4.2表

光子エネルギー MeV	実効線量当量
$ \begin{array}{r} 1. \ 0 \ 10 \ ^{-2} \\ 1. \ 5 \ 10 \ ^{-2} \\ 2. \ 0 \ 10 \ ^{-2} \\ 3. \ 0 \ 10^{-2} \\ \end{array} $	0. 0220 0. 0570 0. 0912 0. 138
$\begin{array}{r} 4. \ 0 \ 10^{-2} \\ 5. \ 0 \ 10^{-2} \\ 6. \ 0 \ 10^{-2} \\ 8. \ 0 \ 10^{-2} \end{array}$	0. 163 0. 186 0. 196 0. 237
1. 0 10 ⁻¹	0. 284
1. 5 10 ⁻¹	0. 436
2. 0 10 ⁻¹	0. 602
3. 0 10 ⁻¹	0. 949
4. 0 10 ⁻¹	1. 30
5. 0 10 ⁻¹	1. 64
6. 0 10 ⁻¹	1. 98
8. 0 10 ⁻¹	2. 64
1.0 10°	3. 27
1.5 10°	4. 68
2.0 10°	5. 93
3.0 10°	8. 19
4.0 10°	10. 2
5.0 10°	12. 1
6.0 10°	14. 0
8.0 10°	17. 8
1.0 10'	21.6

等方照射の場合における光子フルエンスから実効線量当量への 換算係数(10⁻¹² S v cm²)

付第4.3表

光子エネルギー MeV	換算係数
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.0030 0.0160 0.0495 0.187
$\begin{array}{r} 4. \ 0 \ 10^{-2} \\ 5. \ 0 \ 10^{-2} \\ 6. \ 0 \ 10^{-2} \\ 8. \ 0 \ 10^{-2} \end{array}$	0. 352 0. 488 0. 592 0. 675
1. 0 10 ⁻¹ 1. 5 10 ⁻¹ 2. 0 10 ⁻¹ 3. 0 10 ⁻¹	0. 668 0. 635 0. 614 0. 600
4. 0 10 ⁻¹ 5. 0 10 ⁻¹ 6. 0 10 ⁻¹ 8. 0 10 ⁻¹	0.599 0.602 0.609 0.623
1.0 10" 1.5 10" 2.0 10" 3.0 10"	0. 638 0. 666 0. 688 0. 720
$\begin{array}{cccc} 4. & 0 & 10^{\circ} \\ 5. & 0 & 10^{\circ} \\ 6. & 0 & 10^{\circ} \\ 8. & 0 & 10^{\circ} \end{array}$	0.739 0.755 0.770 0.797
1.0 10'	0. 822

等方照射の場合における照射線量から実効線量当量への 換算係数(10⁻² S v R⁻¹)

参考資料

参考資料1 Nal (Tl) シンチレーションスペクトロメータ による測定結果の不確かさ(精密さと正確さ)と問題点

NaI(T1)シンチレーションスペクトロメータによる測定結果の不確かさに関係する因子には次のようなものがある。

(1) シンチレータ内のすべての位置におけるエネルギー吸収が正確に発光→電気パルスとして測定されているかどうか。これにはシンチレータと光電子増倍管の光学的結合、シンチレータの均一性、集光過程などが関係する。

特に、光子エネルギーの低い場合(表面での発光)と高い場合(深くまで入る)、宇 宙線(全体一様)など発光位置の違いによる集光過程上の問題がないかに注意する必要 がある。極端な場合、波高値とエネルギーとの比例関係は著しく損なわれることがある。

- (2) シンチレータ内での吸収エネルギーが正確に波高に変換(エネルギー校正)され、かつそれが解析を行う際の波高分布のエネルギーに合致しているかどうか。これは、エネルギー校正の良否によって決まるが、これがどの程度最終結果に影響するかを参第1.1表に示す。この例1は"0"点、4°Kのピーク、2°* T1のピークのチャネル値を基準値から変化させたとき得られるγ線線量率値の違いを示したもので、これでみられるように、環境放射線測定の場合、低いエネルギー領域の校正の不正確さが結果の値に大きな影響をもつ。
- (3) このほかに、測定の際の統計誤差がある。統計誤差は計数の統計から算出できるが、 実際は同一測定場における繰返し測定によって得られる結果の分布を求め、決定する。 参第1.2表は3 in球形NaI(T1)シンレーションスペクトロメータを用いて、1分 測定を90回くりかえし、その結果の分布を示したもので、数 μ R/h程度の環境におけ る1分間の測定では、 γ 線については約2%(~0.1 μ R/h)、3MeV以上の計数 から求められる宇宙線線量には10%(~ 0.3 μ R/h相当)の相対標準偏差があること がわかる。

参第1.1表 1982年11月9日京大原子炉実験所において測定されたスペクトルについて、 エネルギー、チャネル間の対応の数値をいろいろ変えて線量率を求めた結果 の例(アンダーラインは基準となる値)

"O"点を変える エネルギー チャネル OkeV	K-40ピークを変える エネルギー チャネル 1461keV	T l -208ピ- エネルギー 2614keV	-クを変える チャネル	照 射 線量率 (µR/h)
0 <u>1</u> -3 5 7 9	220		388	6. 55 6. 47 6. 30 6. 14 5. 98 5. 84
1	210 212 214 216 218 220 222 224 224 226		388	$\begin{array}{c} 6.89\\ 6.80\\ 6.72\\ 6.64\\ 6.56\\ 6.47\\ \hline 6.47\\ \hline 6.41\\ 6.36\\ 3.27\\ \end{array}$
	220		382 386 388 392 396 400	$\begin{array}{c} 6.50\\ 6.49\\ 6.47\\ \hline 6.48\\ 6.48\\ 6.48\\ 6.48\end{array}$

参第1.2 表 1分間測定の90回分についての測定値の分布

計数组	訖	γ 線線量半 (μ R /hr)	差	宇宙級線量率 (μ R ∕ hr)	差	
(cpm)	-104 13253	6.48-00	-0.06775	3.03900	0.09418 0.34118	
1))78.0000	2.16797	6.69000	0.13825	2.86200	0.20018	
13453.0000	16.16797	6.78300	0.73125	3.00300	0.05418	
13755.0000	128-16797	6.70303	-0.20275	2.82700	0.55318	
13+25.0000	-11.83203	6.60700	0.05525	2.86200	-0.08282	
13623.0000	163.16797	6.4800C	-0.06575	3.42700	0.48218	
13521.0000	84.16797	6.47500	-0.03675	2.79100	-0.15382	
13472.0000	55.16797	6.67300	0.12125	3.21500	0.27018	
1336.0000	-50.83203	6.43300	-0.11875	2.93300	-0.01162	
13504.0000	67.16797	6.70100	0.14925	3.85100	(90618	
13571.0000	134.16797	6.60000	0.04825	2.79100	-0.15382 -0.08287	
13201.0000	-175.83203	6.51300	0.03625	2.68500	-0.25982	
13428.0000	-8.83203	6.50700	-0.04275	2.82700	-0.11782 op	_
13339.0000	-97.83203	0 m 6.43700	-0.11275	2.79;0(-1.15382	6
13463.0000	31.16797	0 0 6.653	-0.09275	3.74:00	C.80018 O	46
13576.0000	159.16797	0 0 6.2310	-0.26275	3.10400	6.16418	
13425.0000	-10.83203	0 0 6.56400	0.01225	an an 2.93300	-0.01182	7
: 3295.0000	-1+1.83203	6.51 '00	-0.03275	-1 VD 2.65000	-0.29482	C
13533.0000	96.16797		0.08925	0 7 3.21500	0.27018	
13441.0000	4.16797	N 6.5570	0.03725	2.73300	-6.01182	
13733.0000	-48.83203		0.02325	2 2 2.65000	-0.29482 0	
13573.0000	136.16797	+1 6.3450	-0.20675	2.86200	-0.08282	
13231.0000	-145.83203 68.16797	∞ ~ 6.563C	0.01125	3.32100	0.37618	
13-20.0000	-16-83203	v co 6.6550	0.05325	- 2.69700	-0.04782 +	ı
13455.0000	18.16/97	m - 6. 1930		0 2.96600	C.02318	e 1 .
1,546.0000	109.16797	m 6.5410	-0.01075	0 2.82700	-C.11782 🖛	2
1)))),0000	-115.83203		0.13625	7 2.54400		
1)+50.0000	13.16797	6.7540	6.20225	C 6 2.63000	-0.29482	0
1))09.0000	-128-83203	6.5175	-0.05975	V ~ 2.57900	-0.26582 0.23418	
13247.0000	-187.83203	E 6.5553	0.00325	0 O 3.4630C	6.51818	
13248.0000	-166.83203	Z 6.652	- v.09175	2.57900	-0.75382 M	
13430.0000	-6.83203	0 > 6.54.3	-0.01175	ш 0.21500	0.27018 0	~
13611.0000	174.16797		C U.02825	0 2 2.16200	-0.29582	E
13467.0000	30.16797	N Z 2.5.70	c -0.00+75	1 0 3.00300	6.05818 U	Δ
13464.0030	-32.83203	E E 6.11	0.15925	Z 3.59000	0.44718 2	Z
13482.0000	45-16797 -12.83203	E 0 6.6150	0.06425	W Z 2.86200	-0.08282	T.
13513.0000 -	70.16797	6.5933	0.03825	U V J. 4300	0.51318	01
12452.0000	5.16797	6.0030	0 0.05625	3.28600	0.34118	
13424.0000	-#.83203	6.3610	0.00725	2.82700	-0.11782	
1 1 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	-43.83203 66.16747	6.4530	c -0.C8375 o -0.20875	3.03900	0.09418	
1:152.0020	-36.83203	0.7310	0.15325	2.47300	-0.47182	
11142.000C	105.16797	6.7)) 6.57-) 0.18125	2.75600	-0.18882	
0000.0000	-31.83203	6.521	-0.02215	2.92700	-0.11782	
13453.0000	-33.43203	6.702	-0.01275	3.32100	0.51618	
13306.0000	-130.83203	6.657	0.10725	00960.6	0.09418	
13433.0000	165.15/77	6.7250	-0.19775	2.57900	-0.36582	
1))#2.0000	- 54 - 83233	6	-0.11775	3.14500	0.20018	
13482-0005	45.16777	5.452	-0.09975	2.69790	-0.22382	
13422.0000	-14.83203 29.16797	6	-0-18925	2.68500	-0.25982	
13145.0000	-291.83203	e	-0.03875	2.26100	-0.68382	
13-49.0000	-150.83203	6.37° A	-0.17875	3.74500	0.80018	
13338.0000	-98.03203	0.523	-0.03175	2.82700	-0.11782	
13230.0000	-209.83203	5.2-1	0.00475	1,24600	0.34119	
	- 25-16777	6.43	-0.11275	2.57400	-0.36582	
13342.0000	-94.83203	6.445	00 -0.10675	2.61300	-0.J2982 0.J0618	
13431.0000	-35.83203	6 87	-0.06675	2.29700	-0.64782	
13272.0000	-164.83203	6.685 6.685	0.13425	3.21500	-0.40082	
1)e+6.000C	209.16797	6.6)1	0.07925	2.40300	-0.54182	
13+35.0000	-1-83203	0.100	co -c.07575	3.10900	0.10418	
:3445.0000	8.16797	ME 41	6.55175 FR	NEAL -	2.94482 ERROR-	0.035 <u>1</u> 11.45826
-13+36. STAN, DEV -	8320 ERH 118.07×81	C STAN. DEV	- 0.11901	(

参考資料2 各種計測器による測定結果の比較例

3地点で3機関のゲルマニウム半導体スペクトロメータと3機関のNaI(T1)シン チレーションスペクトロメータ、さらに3種の電離箱による同時計測を行った。その結果 を参考までに見てみることとする。

3地点のうち、A地点は屋内(体育館内)で、片側は崖がせまっている。また、屋外で は強い降雨があり、空間 y 線量率は計測時間とともに増加傾向にあった。B地点は、広い 平坦な裸地であり、表面土壌中の放射性核種の分布は、ほぼ全面で均一であった。しかし、 1片の隅で放射線レベルがやや高くなる傾向が示された。計測時間中の空間放射線量はほ ぼ一定であり、天候も快晴であった。すなわちB地点では理想的な地形、環境条件とみら れるところであった。C地点は、ごく近くにコンクリート造りの建物がある芝地で、海岸 へ向かってゆるく下がっていく傾斜地であった。天候は、曇一時雨という状況であったが、 空間線量率はほぼ一定とみられる状況であった。

参第2.1~2.3は、2機関のゲルマニウム半導体スペクトロメータによる各ヶ線東密度 計測値と、1機関のNaI(T1)シンチレーションスペクトロメータによるヶ線東密度 計測値とを比較したものである。1.76MeVヶ線付近を除き、各地点個々の値を考えれば、 平均的にゲルマニウム半導体スペクトロメークによる値とNaI(T1)シンチレーショ ンスペクトロメータによる値の比が、ほぼ1.00に近いことがわかる。すなわち、線東密度 については、NaI(T1)シンチレーションスペクトロメータ、ゲルマニウム半導体ス ペクトロメータともに多くの場合良好な値が得られることを示している。ただし、1.76 MeV付近のデータについては大気中ラドン濃度の変化のため、個々の装置、個々の地点 について相当の差がみられた。ゲルマニウム半導体スペクトロメータで得た線量について は、参第2.1表に示される通り各機関(装置、データ処理方法が異なる)間でかなり良く 一致している。しかし、NaI(T1)シンチレーションスペクトロメータとの比較では 必ずしもそうはならない。特に、A地点のような条件が複雑な場合には、差がでるのは当 然であろう。

普通、こうして得られた比較測定の結果は一般にそのまま適用できるとは限らない。検 出器を含む装置の違い、環境条件に対する装置の安定性の差、校正の差、解析や処理の際 に使用している基礎データの差、手法の違いなど、偏りを生ずる原因は多く、計測される 値には、これらのことにより若干の差が生じ得るものである点に注意が必要である。

		Nal(Tl) シンチレーションスペクトロメータ		電	電 離 箱		ゲルマニウム半導体スペクトロメータ			
場 所	番号	機関A	機関B	機関C	機関(a)	機関(b)	機関(c)	機関X	機関Y	機関Z
	4	7.52	8.70	7.49	11.57	11.8	11.93	6.09	6.06	
A地点	5	8. 31	9.69	8. 55	12.46	12.5	12.69	7.11	6. 98	
	6	8.20	9. 50	8. 25	12. 29	12.4	12, 54	7.62	6. 98	
	7	8.01	9.30	8.10	12.11	12. 23	12.39	7.19	6. 75	
	8	12.34	13.07	12.1	16.14	16. 3	16. 43	13.69	12.60	7
	9	12. 33	13.66	12.1	16.68	16.0	16. 39	13. 12	13.10	13. 34
B地点	10	12.32	13.70	12.0	16.57	16.0	16.30	13.82	13. 51	
	11	12.39	13.70	12.0	16.90	16. 0	16.41	13. 17	13. 16	12 65
	12	12.28	14.62	11.9	17.03	16.4	16.35	13.65	13.16	
	13	12.33	13. 91	12.0	16.71	16.14	16.30	13.58	12.96	13.49
	15	7.64	8.64		11.68	11.8	11.82	7.81	6.54	
	16	7.52	8.47	7.61	11.67	11.5	11.67	7.36	6.45	
C地点	17	7.40	8. 52	7.51	11. 39	11.6	11.67	7.62	6. 39	
	18	7.52	8. 54	7.55	11.43	11.5	11.68	7.41	7.47	
	19	7.46	8.60	7.54	11.54	11.8	11.68	7.58	6. 49	
	20	7.52	8. 55	7.55	11.54	11.64	11.70	7.72	7.15	

参第2.1表 各機関による計測結果の相互比較(照射線量率の比較)

Nal (Tl) 検出器 (r/cml)

付第2.1図 ゲルマニウム半導体スペクトロメータとNaI(T1) シンチレーションス ペクトロメータによる²⁰⁸T1 2.615MeV γ線の線束密度計測値の比較

A, B, Cは測定地点、○及び△は機関X, YのGe半導体スペクトロメータ による測定値。またNal(Tl) シンチレーションスペクトロメータによる測定 は機関Cによる。(以下同様)

N a I (T I)検出器(r / cnl・s)

付第2.2図 ゲルマニウム半導体スペクトロメータとNaI(T1) シンチレーションスペ クトロメータによる²¹¹Bil.756MeV r線の線束密度計測値の比較

参考文献

- (1) 小村和久、科学総説No.29、核現象と分析化学、日本化学会編、 p. 27 ~42 (1982)
- (2) 森内茂、JAERI-1209 (1971)
- (3) 阪上正信、「環境放射線――研究の現状と展望」日本原子力学会編(1982)
- (4) Gogolak, C. V., Miller, K. M., EML 332 (1977)
- (5) Gogolak, C. V., EML 398 (1982)
- (6) Terada, H. et al. J. Nucl. Sci. and Technol., 17, 281~290 (1980)
- (7) 阪井英次等、JAERI M6498 (1976)
- (8) JIS 2 4520 (1979) ゲルマニウム γ 線検出差の試験方法
- (9) 岡野真治、電気学会誌NE-79-7、 p. 53~62 (1979)

文部科学省放射能測定法シリーズ

1.	全ベータ放射能測定法	昭和 51 年 9月(2訂)
2.	放射性ストロンチウム分析法	昭和 58 年12 月 (3 訂)
3.	放射性セシウム分析法	昭和 51 年 9月(1訂)
4.	放射性ヨウ素分析法	平成 8年 3月(2訂)
5.	放射性コバルト分析法	平成 2年 2月(1訂)
6.	NaI(T1) シンチレーションスペクトロメータ機器分析法	昭和 49 年 1月
7.	ゲルマニウム半導体検出器によるガンマ線スペクトロメトリー	平成 4年 8月(3訂)
8.	放射性ジルコニウム分析法	昭和 51 年 9月
9.	トリチウム分析法	平成 8年 3月(1訂)
10.	放射性ルテニウム分析法	平成 8年 3月(1訂)
11.	放射性セリウム分析法	昭和 52 年10 月
12.	プルトニウム分析法	平成 2年11月(1訂)
13.	ゲルマニウム半導体検出器等を用いる機器分析のための試料の前処理法	昭和 57 年 7月
14.	ウラン分析法	平成 8年 3月(1訂)
15.	緊急時における放射性ヨウ素測定法	昭和 52 年10 月
16.	環境試料採取法	昭和 58 年12 月
17.	連続モニタによる環境γ線測定法	平成 8年 3月(1訂)
18.	熱ルミネセンス線量計を用いた環境γ線量測定法	平成 2年 2月(1訂)
19.	ラジウム分析法	平成 2年 2月
20.	空間ヶ線スペクトル測定法	平成 2年 2月
21.	アメリシウム分析法	平成 2年11月
22.	プルトニウム・アメリシウム逐次分析法	平成 2年11月
23.	液体シンチレーションカウンタによる放射性核種分析法	平成 8年 3月(1訂)
24.	緊急時におけるガンマ線スペクトロメトリーのための試料前処理法	平成 4年 8月
25.	放射性炭素分析法	平成 5年9月
26.	ヨウ素-129 分析法	平成 8年 3月

空間 r 線 ス ペ ク ト ル 測 定 法 平成 2年 7月 1日 第1刷 発行 平成 10年 1月 25日 第3刷 発行 発 行 所 財団法人 日本分析センター 〒263-0002 千葉県千葉市稲毛区山王町 295-3 電 話 (043) 423 - 5325 (代表) (043) 424 - 8663 (直通) F A X (043) 423 - 4071