ISSN 0441-2516 NIRS-RSD-70 # RADIOACTIVITY SURVEY DATA in Japan NUMBER 70 Sep. 1984 National Institute of Radiological Sciences Chiba, Japan # Radioactivity Survey Data in Japan # Number 70 # September 1984 ### Contents | | P | age | |----|---|------| | En | onmental Materials | . 1 | | | (Japan Chemical Analysis Center) | | | 1. | Collection and pretreatment of samples | . 1 | | 2. | Preparation of samples for analysis | . 3 | | 3. | Separation of Strontium-90 and Cesium-137 | . 3 | | 4. | Determination of Stable strontium, calcium and Potassium | . 4 | | 5. | Counting | . 4 | | 6. | Results | . 5 | | | (1)-1 Strontium-90 and Cesium-137 in Rain and dry fallout | . 5 | | | (for domestic program) | | | | -2 Strontium-90 and Cesium-137 in Rain and dry fallout | . 9 | | | (for WHO Program) | | | | (2) Strontium-90 and Cesium-137 in Airborne dust | . 12 | | | (3) Strontium-90 and Cesium-137 in Service water | . 14 | | | (4) Strontium-90 and Cesium-137 in Freshwater | . 16 | | | (5) Strontium-90 and Cesium-137 in Soil | . 18 | | | (6) Strontium-90 and Cesium-137 in Sea watar | . 21 | | | (7) Strontium-90 and Cesium-137 in Sea seadiments | . 23 | | | | | ### Environmental and Dietary Materials* (Japan Chemical Analysis Center) ### 1. Collection and pretreatment of samples ### (1) Rain and dry fallout Rain and dry fallout was collected monthly on a sampling tray, approximately $5000~\text{cm}^2$ in area, which was filled with water to a depth of 1 cm at the beginning of every month. The sample was filtered after strontium and cesium carriers were added. The tray was washed with 5ℓ of distilled water and the washing was combined to the filtrate. The sample was passed through a cation exchange column (500 m ℓ of Dowex 50W X8, 50 \sim 100 mesh, Na form) at a rate of 80 m ℓ /min. ### (2) Airborne dust Airborne dust was collected by an electrostatic precipitator or a filter air sampler for every three months at a rate of more than $3000~\text{m}^3$ per month. The sampling was done 1 to 1.5 meters above the ground. ### (3) Service water and freshwater Service water, $100 \ \ell$ each, was collected at an intake of the water-treatment plant and at the tap after water was left running for five minutes. Water, to which added carriers of strontium and cesium immediately after sampling, was vigorously stirred and filtered. The subsequent process was the same as that described in the section (1). Freshwater was treated in the same way as the service water. ### (4) Soil Soil was collected from the location in the spacious and flat area without past disturbance on the surface caused by duststorms, inflow and outflow due to precipitation, and so on. Any places located under trees in a forest, in a stony area or inside of river banks were avoided. Soil was taken from two layers of different depths, $0\sim5$ cm and $5\sim20$ cm. In the course of airdrying, lumps were crushed by hand, and roots of plants and pebbles were removed. The soil was then passed through a 2 mm sieve to remove small gravels. ### (5) Sea water Sea water was collected at the fixed stations where the effect of terrestrial fresh water from rivers was expected to be negligibly small. A special consideration was also given to weather conditions. The sampling was carried out when there was no rainfall for the last few days. To prevent contamination, water samples were collected at the bow of a sampling boat just before she stood still by scooping surface water using a polyethylene bucket. Immediately after the collection, the samples were acidified to a pH lower than 3 by adding concentrated hydrochloric acid in a ratio of 1 m ℓ to 1 ℓ of sea water, and then stored in 20-\(\ell \) polyethylene containers. The sampling equipments as well as containers were thoroughly rinsed with dilute hydrochloric acid and then with distilled water before use. Two hundred milliliters of sea water was also collected at the same stations for the determination of chlorinity. ### (6) Sea sediments Sediment was collected in the same area as that for the sea water sample, taking the following criteria into account: - a. The depth of water exceeds 1 m at low tide. - b. No significant sedimental movement is observed in the vicinity of concern. - c. Mud, silt and fine sand are preferable. A conventional sediment sampling device was used for collecting the top few centimeters of surface sediment. Approximately 4 kg of the sample in wet weight was spread on a large porcelain dish and dried in an electric oven at 105 to 110°C to a costant weight. ### (7) Total diet A full one day ordinary diet including three meals, water, tea and other in-between snacks for five persons was collected as a sample of "total diet". The sample in a large stainless steel pan was carbonized carefully by direct application of gas flame, and was transferred to a porcelain dish and then ashed at $500\ ^{\circ}\text{C}$ in an electric muffle furnace. ### (8) Rice Polished rice was collected in producing districts at the harvest and in consuming areas when new crops were first put on sale. The sample was carbonized and ashed in a porcelain dish. ^{*} Samples were sent to the Center from 32 contracted prefectures. ### (9) Milk Raw milk was collected in producing districts and commercial milk was purchased in consuming districts. Milk in a stainless steel pan or a porcelain dish was evaporated to dryness followed by carbonization and ashing. ### (10) Vegetables Spinach and Japanese radish were selected as the representatives for leaf vegetables and for non-starch roots, respectively. After removing soil, the edible part of vegetable sample was dried and carbonized in a stainless ateel pan or a porcelain dish. ### (11) Tea Five hundred grams of manufactured green tea was collected, carbonized and ashed in a stainless steel pan or a porcelain dish. ### (12) Fish, shellfish and seaweeds ### a. Sea fish and freshwater fish Fish was rinsed with water and blotted with a filter paper. Only the edible part was used in case of larger sized fish, and the whole part was used in case of smaller ones. Each sample was weighed and placed in a stainless steel pan or a porcelain dish. After carbonized, the sample was ashed in an electric muffle furnace. ### b. Shellfish Approximately 4 kg of shellfish including the shells was collected or purchased. After removing the shells, it was treated in the same way as that for the sea fish. ### c. Seaweeds Edible seaweeds were collected and rinsed with water to remove sand and other adhering matters on the surface. These were removed of excess water, weighed dried and ashed. Table 1 shows detailes of sample collection. Table 1 Details of sample collection | Sample | Frequency of sampling | Quantity of sample | |---|--------------------------------------|---------------------------| | =Environmental materials= | | | | (1) Rain and dry fallout | | | | <pre>1 for domestic program</pre> | monthly | | | 2 for WHO program | monthly | 2 . | | (2) Airborne dust | guarterly | $>$ 3000 m 3 /month | | (3) Service water and freshwater | | | | 1 Service water (sourse water) | semiyearly (June and December) | 100ℓ | | Service water (tap water) | semiyearly (June and December) | 100ℓ | | 3 Freshwater | yearly (fishing season) | 100ℓ | | (4) Soil | | | | 1 0~5 cm | yearly (June or July) | 4 kg | | 2 5~20cm | yearly (June or July) | 4 kg | | (5) Sea water | yearly (July or August) | 40 ℓ | | (6) Sea sediments | yearly (July or August) | 4 kg | | =Dietary materials= | | | | (7) Total diet | semiyearly (June, November or | daily amount for 5 person | | | December) | | | (8) Rice | | | | 1 Producing districts | Yearly (harvesting season) | 5 kg (polished rice) | | 2 consuming districts | yearly (harvesting season) | 5 kg (polished rice) | | (9) Milk | | | | 1 producing districts for | guarterly (February, May, August and | 3ℓ | | WHO program | November) | | | 2 producing districts for | semiyearly (February and August) | 3ℓ | | domestic program | | | | | Sample | Frequency of sampling | Quantity of sample | |------|-------------------------------|--------------------------------------|--------------------------| | 3 | consuming districts | semiyearly (February and August) | 3 ℓ | | 4 | powdered milk | semiyearly (April and October) | 2~3 kg | | (10) | Vegetables | | | | 1 | producing districts | yearly (hervesting season) | 4 kg | | 2 | consuming districts | yearly (harvesting season) | 4 kg | | (11) | Tea | yearly (the first harvesting season) | 500 g (manufactured tea) | | (12) | Fish, shellfish, and seaweeds | | | | 1 | Sea fish | yearly (fishing season) | 4 kg | | 2 | Freshwater fish | yearly (fishing season) | 4 kg | | 3 | Shellfish | yearly (fishing season) | 4 kg | | 4 | Seaweeds | yearly (fishing season) | 2~3 kg | ### 2. Preparation of samples for analysis ### (1) Rain, service water and freshwater Strontium and cesium were eluted with hydrochloric acid from the cation exchange column. The residue of rain sample on the filter paper was ashed in an electric muffle furnace and the ash was dissolved in hydrochlbric acid. The insoluble part was filtered and washed. The filtrate and the washings were combined to the previous eluate and used for radiochemical analysis. ### (2) Soil Air-dried soil was passed through a 20 mesh sieve. The sieved sample was heated, in the presence of strontium and cesium carriers, together with sodium hydroxide. The sample was then heated with hydrochloric acid and the insoluble part was filtered and washed. The combined solution of the filtrate and washings was used for radiochemical analysis. ### (3) Sea sedments After removal of pebbles, shells and other foreign matters, the sediment sample was dried in a hot-air oven and ground finely with a mortar. The sample was passed through a 20 mesh sieve. The further preparation of the sample was
the same as that described in the section 2-(2). ### (4) Rice The ashed sample was pulverlized with a porcelain mortar and passed through a 42 mesh sieve. The sieved sample to which both strontium and cesium carriers were added, was digested with hydrochloric acid by heating. After the sample was heated again with nitric acid to dryness, strontium and cesium were extracted with hydrochloric acid and water. The insoluble part was filtered and washed. The filtrate and washings were combined for subsequent radiochemical analysis. (5) Airborne dust, diet, milk, vegetable, fish and shellfish, seaweeds, tea, and others. These ashed samples were treated with the same procedure as that described in the section 2-(4). ### 3. Separation of strontiunm-90 and cesium-137 ### (1) Strontium-90 Sample solutions, prepared as in the foregoing sections 2-(1) through 2-(5), were neutralized with sodium hydroxide. After sodium carbonate was added, the precipitate of strontium and calcium carbonates was separated. The supernatant solution was retained for cesium-137 determination. The carbonates were dissolved in hydrochloric acid and calcium and strontium were precipitated as oxalates. The precipitate was dissolved in nitric acid and strontium was separated from calcium by successive fuming nitric acid separations. Iron scavenge was made after addition of ferric iron carrier followed by barium chromate separation after addition of barium carrier to remove radium, its daughters and lead. Strontium was recovered as carbonate, and the precipitate was dried and weighed to determine strontium recovery. The strontium carbonate was dissolved in hydrochloric acid and the iron carrier was added. The solution was allowed to stand for two weeks for strontium-90 and yttrium-90 to attain equilibrium. The yttrium-90 was coprecipitated with ferric hydroxide and the precipitate was filtered off, washed and counted. ### (2) Cesium-137 The supernatant separated from the strontium fraction in the solution was acidified with hydrochloric acid. While stirring the solution, cesium was adsorbed on ammonium molybdophosphate. After filtered off and washed with dilute nitric acid, the precipitate was dissolved in 2.5N sodium hydroxide solution. Ammonia was removed completely from the solution by boiling. The solution was adjusted to pH 8.2 with hydrochloric acid and allowed to cool. Molybdenum hydroxide which came out in the solution, was filtered off and washed with water. In such circumstance that contamination by rubidium-87 was not negligible for the measurement of cesium-137, the follwing ion-exchange procedure was applied. A fixed amount of ferric chloride solution was added to the solution dissolved with 2.5N sodium hydroxide. Ammonia and molybdenum hydroxide were removed as described above. Ethylenediaminetetraaceticacid tetrasodium salt was added to the filtrate and washings. Cesium and rubidium were adsorbed on a cation exchange resin. Cesium was separated from rubidium by eluting with hydrochloric acid. To this eluate or the filtrate and washings after removing molybdenum hydroxide, chloroplatinic acid solution was added to precipitate cesium. The precipitate was filtered onto a tared paper in a demountable filter and washed with water and then ethanol. After fixing the filter paper on a tared planchette and drying it, the chemical yield of cesium was determined by weighing the precipitate with the planchette. Radioactivity from cesium-137 was measured for this precipitate. ## 4. Determination of stable strontium, calcium and potassium A weighed amount of soil or sea sediment was treated under heating with sodium hydroxide and then with hydrochloric acid for extraction. A weighed aliquot of ashed samples of total diet, vegetables, milk, fish, shellfish or seeweeds was digested using hydrochloric acid or nitric acid, hydrofluoric acid being used when necessary. The extract was made up to an appropriate volume with dilute hydrochloric acid. The sample solution was analyzed for calcium by titration with standard potassium permanganate solution after separating calcium as oxalate. Atomic absorption spectroscopy was applied when appropriate. Stable strontium and potassium were determined by atomic absorption and flame emission spectrometry, respectively. ### 5. Counting After the radiochemical separation, the mounted precipitates were counted for activity using low background beta counters normally for 60 min. Net sample counting rates were corrected for counter efficeiency, recovery, self-absorption and decay to obtain the content of strontium-90 and cesium-137 radioactivity per sample aliquot. From the results, concentrations of these nuclides in the original samples were calculated. ### 6. Results # (1)-1 Strontium-90 and Cesium-137 in Rain and dry fallout (for domestic program) (from Jun. 1984 to Dec. 1984) —continued from No. 68 of this publication— Table (1)-1: Strontium-90 and Cesium-137 Rain and dry fallout | | | ······································ | ⁹⁰ Sr | ¹³⁷ Cs | |--------------------------|----------|--|------------------------------|------------------------------| | Location | Duration | Precipitation | (mCi/km²) | (mCi/km²) | | | (days) | (mm) | (mC17 km) | (mC1/ km ⁻) | | June, 1984 | | | | | | Onagawa-machi, MIYAGI | 31 | 117.8 | 0.006±0.0008 | 0.002±0.0006 | | Shizuoka, SHIZUOKA | 32 | 167.5 | 0.004±0.0008 | 0.003±0.0005 | | Matsue, SHIMANE | 31 | 275.0 | 0.002±0.0006 | 0.001±0.0005 | | Matsue, SHIMANE | 31 | 275.0 | 0.00210.0000 | 0.001±0.0003 | | July, 1984 | | | | | | Sapporo, HOKKAIDO | 31 | 44.5 | 0.002±0.0006 | 0.001±0.0005 | | Aomori, AOMORI | 31 | 98.4 | 0.012±0.0010 | 0.003±0.0006 | | Onagawa-machi, MIYAGI | 32 | 129.7 | 0.004±0.0007 | 0.000±0.0004 | | Mito, IBARAGI | 31 | 90.5 | 0.004±0.0007 | 0.000±0.0004
0.003±0.0005 | | | | | | | | Shinjuku, TOKYO | 31 | 81.8 | 0.001±0.0006 | 0.001±0.0004 | | Yokohama, KANAGAWA | 32 | 109.7 | 0.001±0.0006 | 0.000±0.0004 | | Fukui, FUKUI | 31 | 169.7 | 0.003±0.0007 | 0.001 ± 0.0005 | | Shizuoka, SHIZUOKA | 31 | 52.0 | 0.004±0.0007 | 0.000±0.0004 | | Kyoto, KYOTO | 32 | 126.6 | 0.004±0.0007 | 0.001 ± 0.0004 | | Wakayama, WAKAYAMA | 31 | 178.8 | 0.005±0.0008 | 0.002±0.0005 | | Wakayama, WAKATAMA | 31 | 170.0 | 0.00310.0008 | 0.00210.0003 | | Tottori, TOTTORI | 30 | 111.1 | 0.006±0.0008 | 0.001 ± 0.0005 | | Matsue, SHIMANE | 32 | 77.8 | 0.002±0.0006 | 0.001 ± 0.0004 | | Hiroshima, HIROSHIMA | 31 | 71.7 | 0.008±0.0009 | 0.002±0.0005 | | Matsuyama, EHIME | 31 | 78.5 | 0.004±0.0007 | 0.000±0.0004 | | • | 31 | 52.7 | 0.009±0.0016 | 0.000±0.0004
0.002±0.0009 | | Dazaifu, FUKUOKA | 31 | 52.1 | 0.00910.0010 | 0.002±0.0009 | | Saga, SAGA | 32 | 35.8 | 0.004±0.0008 | 0.000 ± 0.0004 | | Nagasaki, NAGASAKI | 31 | 64.0 | 0.001±0.0006 | 0.001 ± 0.0005 | | Yonagusuku-mura, OKINAWA | 31 | 99.0 | 0.000 ± 0.0008 | 0.001 ± 0.0004 | | | | | | | | August, 1984 | 0.3 | 20.0 | 0.00510.0007 | 0.001.10.0005 | | Sapporo, HOKKAIDO | 31 | 39.0 | 0.005±0.0007 | 0.001 ± 0.0005 | | Aomori, AOMORI | 32 | 41.9 | 0.013±0.0010 | 0.002±0.0005 | | Onagawa-machi, MIYAGI | 32 | 23.0 | 0.008±0.0008 | 0.002±0.0005 | | Yamagata, YAMAGATA | 32 | 7.7 | 0.004 ± 0.0007 | 0.002±0.0005 | | Ookuma-machi, FUKUSHIMA | 32 | 31.0 | 0.002±0.0006 | 0.000 ± 0.0004 | | Mito, IBARAGI | 32 | 4.5 | 0.004±0.0007 | 0.000±0.0004 | | | 32
32 | 4.5
41.3 | 0.004±0.0007 | 0.000±0.0004
0.003±0.0006 | | Shinjuku, TOKYO | | | | | | Yokohama, KANAGAWA | 32 | 87.6 | 0.001±0.0006 | 0.001 ± 0.0004 | | Fukui, FUKUI | 31 | 44.9 | 0.000±0.0005 | 0.000±0.0004 | | Shizuoka, SHIZUOKA | 34 | 213.0 | 0.002±0.0006 | 0.001±0.0005 | | Nagoya, AICHI | 32 | 23.0 | 0.004±0.0007 | 0.001±0.0005 | | Kyoto, KYOTO | 33 | 75.1 | 0.004±0.0007 | 0.001±0.0004 | | Kobe, HYOGO | 33 | 21.5 | 0.001±0.0006 | 0.000±0.0004 | | | 33
32 | 55.9 | 0.001±0.0008
0.003±0.0007 | 0.000±0.0004
0.001±0.0005 | | Wakayama, WAKAYAMA | | | | | | Tottori, TOTTORI | 34 | 26.9 | 0.014 ± 0.0011 | 0.002±0.0005 | | Metsuse, SHIMANE 32 37.2 0.004±0.0007 0.01±0.0004 Hiroshima, HIROSHIMA 32 80.8 0.013±0.0010 0.001±0.0005 Matsuyame, EUKIUGKA 32 187.3 0.001±0.0005 0.001±0.0005 Sage, SAGA 33 227.5 0.001±0.0005 0.000±0.0004 Nagaseki, NAGASAKI 32 245.0 0.001±0.0005 0.001±0.0005 Yonagusuku-mura, OKINAWA 35 369.5 0.003±0.0006 0.001±0.0005 September, 1984 Sappore, HOKKAIDO 32 54.0 0.002±0.0006 0.001±0.0005 Aomori, AOMORI 31 11.29 0.006±0.0007 0.001±0.0005 Aomeri, AOMORI 31 11.29 0.006±0.0007 0.001±0.0004 Vamagada, YAMAGATA 31 174.0 0.005±0.0007 0.001±0.0005 Mito, IBARAGI 31 29.0 0.006±0.0005 0.001±0.0006 Shirjuku, TOKYO 31 60.8 0.005±0.0005 0.001±0.0006 Shirjuku, FUKUI 32 63.1 0.002±0.0006 0.001±0.0006< | Location | Duration
(days) | Precipitation (mm) | 90Sr
(mCi/km²) | ¹³⁷ Cs
(mCi/km²) |
--|---------------------------------------|--------------------|--------------------|--------------------|--------------------------------| | Hiroshima, HIROSHIMA 32 50.8 | | | | | | | Matsuyama, EHIME | Matsue, SHIMANE | 32 | 37.2 | 0.004 ± 0.0007 | | | Dazaifu, FUKUOKA 32 | Hiroshima, HIROSHIMA | 32 | 50.8 | 0.013±0.0010 | 0.001 ± 0.0005 | | Dazaffu, FUKUOKA 32 187.3 0.003±0.0007 0.001±0.0005 Saga, SAGA 33 227.5 0.001±0.0005 0.000±0.0004 Nagasaki, NAGASAKI 32 245.0 0.001±0.0005 0.001±0.0005 0.001±0.0005 0.001±0.0005 0.001±0.0005 0.001±0.0005 0.001±0.0005 0.001±0.0005 0.001±0.0005 0.001±0.0005 0.001±0.0005 0.001±0.0005 0.001±0.0005 0.001±0.0005 0.001±0.0005 0.001±0.0006 0.001±0.0005 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0005 0.001±0.0006 0.001±0.0005 0.001±0.0005 0.001±0.0005 0.001±0.0005 0.001±0.0005 0.001±0.0005 0.001±0.0005 0.001±0.0006 0.001±0.0005 0.001±0.0006 0.001±0.0005 0.001±0.0006 0.001±0.0005 0.001±0.0006 0.001±0.0005 0.001±0.0006 | Matsuyama, EHIME | 31 | 55.5 | 0.001 ± 0.0006 | 0.002±0.0006 | | Nagasaki, NAGASAKI 32 | | 32 | 187.3 | 0.003 ± 0.0007 | 0.001 ± 0.0005 | | Yonagusuku-mura, OKINAWA 35 369.5 0.003±0.0006 0.001±0.0005 | | | | | | | Yonagusuku-mura, OKINAWA 35 369.5 0.003±0.0006 0.001±0.0005 | Names In MACACAVI | 22 | 245.0 | 0.001±0.0005 | 0.001+0.0005 | | Sapporo, HOKKAIDO 32 54.0 0.002±0.0006 0.001±0.0005 | , , , , , , , , , , , , , , , , , , , | | | | | | Sapporo, HOKKAIDO 32 54.0 0.002±0.0006 0.001±0.0005 | Sentember 1984 | | | | | | Aomori, AOMORI 31 112.9 0.008±0.0009 0.004±0.0006 Onagawa-machi, MIYAGI 30 200.9 0.006±0.0007 0.001±0.0004 Yamagata, YAMAGATA 31 174.0 0.005±0.0007 0.000±0.0004 Ookuma-machi, FUKUSHIMA 33 79.3 0.001±0.0005 0.001±0.0006 0.001±0.0005 0.001±0.0005 0.001±0.0006 0.001±0.0005 0.001±0.0006 0.001±0.0005 0.001±0.0006 0.001±0.0006 0.001±0.0005 0.001±0.0006 0.001±0.0 | | 32 | 54.0 | 0.002±0.0006 | 0.001±0.0005 | | Onagawa-machi, MIYAGI 30 200.9 0.006±0.0007 0.001±0.0004 Yamaqata, YAMAGATA 31 174.0 0.005±0.0007 0.000±0.0004 Ockuma-machi, FUKUSHIMA 33 79.3 0.001±0.0005 0.000±0.0004 Mito, IBARAGI 31 29.0 0.000±0.0005 0.001±0.0005 Shinjuku, TOKYO 31 60.8 0.005±0.0008 0.001±0.0005 Yokohama, KANAGAWA 30 69.0 0.001±0.0006 0.001±0.0005 Yokohama, KANAGAWA 30 69.0 0.001±0.0006 0.001±0.0005 Shizuoka, SHIZUOKA 29 86.5 0.002±0.0006 0.001±0.0004 Shizuoka, SHIZUOKA 29 86.5 0.002±0.0006 0.001±0.0005 Kyoto, KYOTO 32 99.2 0.001±0.0006 0.001±0.0005 Kyoto, KYOTO 32 99.2 0.001±0.0006 0.001±0.0006 Kobe, HYOGO 30 11.7 0.005±0.0008 0.002±0.0005 Matsua, SHIMANE 32 89.8 0.001±0.0006 0.001±0.0005 Ma | | | | | | | Yamagata, YAMAGATA 31 174.0 0.005±0.0004 0.000±0.0004 Ookuma-machi, FUKUSHIMA 33 79.3 0.001±0.0005 0.000±0.0004 Mito, IBARAGI 31 29.0 0.000±0.0005 0.001±0.0005 Shinjuku, TOKYO 31 60.8 0.005±0.0006 0.001±0.0005 Yokohama, KANAGAWA 30 69.0 0.001±0.0006 0.001±0.0005 Fukui, FUKUI 32 63.1 0.002±0.0007 0.003±0.0006 Shizuoka, SHIZUOKA 29 86.5 0.002±0.0006 0.001±0.0004 Nagoya, AlCHI 31 82.0 0.002±0.0006 0.001±0.0004 Kyoto, KYOTO 32 99.2 0.001±0.0006 0.001±0.0004 Kobe, HYOGO 30 111.7 0.005±0.0008 0.002±0.0005 Vakayama, WAKAYAMA 28 66.1 0.001±0.0006 0.001±0.0005 Tottori, TOTTORI 29 103.5 0.005±0.0006 0.001±0.0005 Matsue, SHIMANE 32 89.8 0.004±0.0007 0.001±0.0006 Hiroshima, | | | | | | | Ockuma-machi, FUKUSHIMA 33 79.3 0.001±0.0005 0.000±0.0004 Mito, IBARAGI 31 29.0 0.000±0.0005 0.001±0.0004 Shinjuku, TOKYO 31 60.8 0.005±0.0008 0.001±0.0005 Yokohama, KANAGAWA 30 69.0 0.001±0.0007 0.003±0.0006 Fukui, FUKUI 32 63.1 0.002±0.0006 0.001±0.0004 Shizuoka, SHIZUOKA 29 86.5 0.002±0.0006 0.001±0.0004 Nagoya, AICHI 31 82.0 0.002±0.0006 0.011±0.0005 Kyoto, KYOTO 32 99.2 0.001±0.0008 0.002±0.0005 Kyoto, KYOTO 32 99.2 0.001±0.0006 0.001±0.0004 Kobe, HYOGO 30 111.7 0.005±0.0008 0.002±0.0005 Wakayama, WAKAYAMA 28 66.1 0.001±0.0006 0.001±0.0005 Tottori, TOTTORI 29 103.5 0.005±0.0008 0.002±0.0005 Matsus, SHIMANE 32 89.8 0.004±0.0007 0.001±0.0006 Mistusyama, EHIME< | | | | | | | Mito, IBARAGI 31 29.0 0.000±0.0005 0.001±0.0004 Shinjuku, TOKYO 31 60.8 0.005±0.0008 0.001±0.0005 Yokohama, KANAGAWA 30 69.0 0.001±0.0006 0.001±0.0005 Yokohama, KANAGAWA 30 69.0 0.001±0.0006 0.001±0.0006 0.001±0.0006 Strukui, FUKUI 32 63.1 0.002±0.0007 0.003±0.0006 0.000±0.0004 Nagoya, AICHI 31 82.0 0.002±0.0006 0.000±0.0004 Nagoya, AICHI 31 82.0 0.002±0.0006 0.001±0.0004 Nagoya, AICHI 31 82.0 0.002±0.0006 0.001±0.0005 Nakayama, WAKAYAMA 28 66.1 0.001±0.0006 0.001±0.0005 Nakayama, WAKAYAMA 28 66.1 0.001±0.0006 0.001±0.0005 Nakayama, WAKAYAMA 28 66.1 0.001±0.0006 0.001±0.0005 Natsue, SHIMANE 32 89.8 0.004±0.0007 0.001±0.0005 Natsue, SHIMANE 32 89.8 0.004±0.0007 0.001±0.0005 Natsue, SHIMANE 31 117.7 0.004±0.0008 0.001±0.0005 Natsue, SHIMA 31 117.7 0.004±0.0008 0.001±0.0005 Natsue, SHIME 32 67.0 0.001±0.0006 0.001±0.0005 Natsue, Tukuruk 28 86.5 0.001±0.0006 0.001±0.0005 Nagasaki, NAGASAKI 31 163.2 0.002±0.0006 0.000±0.0004 Nagasaki, NAGASAKI 31 130.0 0.001±0.0006 32 102.0 0.008±0.0006 0.000±0.0006 0.000±0.0005 Nagawa-machi, MIYAGI 33 136.5 0.008±0.0009 0.002±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.001±0.0006 0.0001±0.0006 0.0001±0.0006 0.0001±0.0006 0.0001±0.0006 0.0001±0.0006 0.0001±0.0006 0.0001±0.0006 0.0001±0.0006 0.0001±0.0006 0.000 | | | |
 | | Shinjuku, TOKYO 31 60.8 0.005±0.0008 0.001±0.0005 Yokohama, KANAGAWA 30 69.0 0.001±0.0006 0.001±0.0005 Yokohama, KANAGAWA 30 69.0 0.001±0.0006 0.001±0.0006 Shizuoka, SHIZUOKA 29 86.5 0.002±0.0006 0.000±0.0004 | Ookuma-machi, FUKUSHIMA | 33 | 79.3 | 0.001±0.0005 | 0.000±0.0004 | | Yokohama, KANAGAWA 30 69.0 0.001±0.0006 0.001±0.0005 Fukui, FUKUI 32 63.1 0.002±0.0006 0.000±0.0004 Shizuoka, SHIZUOKA 29 86.5 0.002±0.0006 0.000±0.0004 Nagoya, AICHI 31 82.0 0.002±0.0006 0.001±0.0005 Kyoto, KYOTO 32 99.2 0.001±0.0006 0.001±0.0004 Kobe, HYOGO 30 111.7 0.005±0.0008 0.002±0.0005 Wakayama, WAKAYAMA 28 66.1 0.001±0.0006 0.001±0.0005 Tottori, TOTTORI 29 103.5 0.005±0.0008 0.002±0.0005 Matsue, SHIMANE 32 89.8 0.004±0.0007 0.001±0.0006 Hiroshima, HIROSHIMA 31 117.7 0.004±0.0007 0.001±0.0006 Matsuyama, EHIME 32 67.0 0.001±0.0006 0.001±0.0005 Dazaifu, FUKUOKA 31 163.2 0.002±0.0006 0.000±0.0004 Saga, SAGA 30 70.9 0.001±0.0006 0.000±0.0004 Nagasaki, NAGASAK | Mito, IBARAGI | | | | | | Fukui, FUKUI 32 63.1 0.002±0.0007 0.003±0.0006 Shizuoka, SHIZUOKA 29 86.5 0.002±0.0006 0.000±0.0004 Nagoya, AICHI 31 82.0 0.002±0.0006 0.001±0.0005 Kyoto, KYOTO 32 99.2 0.001±0.0006 0.001±0.0005 Kobe, HYOGO 30 111.7 0.005±0.0008 0.002±0.0005 Wakayama, WAKAYAMA 28 66.1 0.001±0.0006 0.001±0.0005 Tottori, TOTTORI 29 103.5 0.005±0.0008 0.002±0.0005 Matsue, SHIMANE 32 89.8 0.004±0.0007 0.001±0.0005 Hiroshima, HIROSHIMA 31 117.7 0.004±0.0008 0.001±0.0005 Matsuyama, EHIME 32 67.0 0.001±0.0006 0.001±0.0005 Saga, SAGA 30 70.9 0.001±0.0006 0.000±0.0004 Saga, SAGA 30 70.9 0.001±0.0006 0.000±0.0004 Yangaski, NAGASAKI 31 130.0 0.001±0.0006 0.001±0.0006 Yangaski, NAGASAKI | Shinjuku, TOKYO | 31 | 60.8 | 0.005±0.0008 | 0.001 ± 0.0005 | | Shizuoka, SHIZUOKA 29 86.5 0.002±0.0006 0.000±0.0004 | Yokohama, KANAGAWA | 30 | 69.0 | 0.001 ± 0.0006 | 0.001 ± 0.0005 | | Shizuoka, SHIZUOKA 29 | Fukui, FUKUI | 32 | 63.1 | 0.002±0.0007 | 0.003±0.0006 | | Kyoto, KYOTO 32 99.2 0.001±0.0006 0.001±0.0004 Kobe, HYOGO 30 111.7 0.005±0.0008 0.002±0.0005 Wakayama, WAKAYAMA 28 66.1 0.001±0.0006 0.001±0.0005 Tottori, TOTTORI 29 103.5 0.005±0.0008 0.002±0.0005 Matsue, SHIMANE 32 89.8 0.004±0.0007 0.001±0.0004 Hiroshima, HIROSHIMA 31 117.7 0.004±0.0008 0.001±0.0005 Matsuyama, EHIME 32 67.0 0.001±0.0006 0.001±0.0005 Dazaifu, FUKUOKA 31 163.2 0.002±0.0006 0.000±0.0004 Saga, SAGA 30 70.9 0.001±0.0006 0.000±0.0004 Nagasaki, NAGASAKI 31 130.0 0.001±0.0006 0.002±0.0004 Yonagusuku-mura, OKINAWA 28 86.5 0.001±0.0006 0.002±0.0005 October, 1984 Sapporo, HOKKAIDO 32 76.5 0.001±0.0006 0.003±0.0006 Aomori, AOMORI 32 102.0 0.008±0.0009 0.002±0.0005 | , | 29 | 86.5 | 0.002±0.0006 | 0.000±0.0004 | | Kyoto, KYOTO 32 99.2 0.001±0.0006 0.001±0.0004 Kobe, HYOGO 30 111.7 0.005±0.0008 0.002±0.0005 Wakayama, WAKAYAMA 28 66.1 0.001±0.0006 0.001±0.0005 Tottori, TOTTORI 29 103.5 0.005±0.0008 0.002±0.0005 Matsue, SHIMANE 32 89.8 0.004±0.0007 0.001±0.0004 Hiroshima, HIROSHIMA 31 117.7 0.004±0.0008 0.001±0.0005 Matsuyama, EHIME 32 67.0 0.001±0.0006 0.001±0.0005 Dazaitu, FUKUOKA 31 163.2 0.002±0.0006 0.000±0.0004 Saga, SAGA 30 70.9 0.001±0.0006 0.000±0.0004 Nagasaki, NAGASAKI 31 130.0 0.001±0.0006 0.002±0.0004 Yonagusuku-mura, OKINAWA 28 86.5 0.001±0.0006 0.001±0.0005 October, 1984 Sapporo, HOKKAIDO 32 76.5 0.001±0.0006 0.002±0.0005 Aomori, AOMORI 32 102.0 0.008±0.0009 0.002±0.0005 | Nagova AICHI | 31 | 82.0 | 0.002±0.0006 | 0.001±0.0005 | | Kobe, HYOGO 30 111.7 0.005±0.0008 0.002±0.0005 Wakayama, WAKAYAMA 28 66.1 0.001±0.0006 0.001±0.0005 Tottori, TOTTORI 29 103.5 0.005±0.0008 0.002±0.0005 Matsue, SHIMANE 32 89.8 0.004±0.0007 0.001±0.0004 Hiroshima, HIROSHIMA 31 117.7 0.004±0.0008 0.001±0.0005 Matsuyama, EHIME 32 67.0 0.001±0.0006 0.001±0.0005 Dazaifu, FUKUOKA 31 163.2 0.002±0.0006 0.000±0.0004 Saga, SAGA 30 70.9 0.001±0.0006 0.000±0.0004 Nagasaki, NAGASAKI 31 130.0 0.001±0.0006 0.002±0.0004 Yonagusuku-mura, OKINAWA 28 86.5 0.001±0.0006 0.001±0.0005 October, 1984 Sapporo, HOKKAIDO 32 76.5 0.001±0.0006 0.003±0.0006 Aomori, AOMORI 32 102.0 0.008±0.0009 0.002±0.0005 Yamaqata, YAMAGATA 32 60.8 0.002±0.0006 0.001±0.0004 <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | Wakayama, WAKAYAMA 28 66.1 0.001±0.0006 0.001±0.0005 Tottori, TOTTORI 29 103.5 0.005±0.0008 0.002±0.0005 Matsue, SHIMANE 32 89.8 0.004±0.0007 0.001±0.0004 Hiroshima, HIROSHIMA 31 117.7 0.004±0.0006 0.001±0.0005 Matsuyama, EHIME 32 67.0 0.001±0.0006 0.001±0.0005 Dazaifu, FUKUOKA 31 163.2 0.002±0.0006 0.000±0.0004 Saga, SAGA 30 70.9 0.001±0.0006 0.000±0.0004 Nagasaki, NAGASAKI 31 130.0 0.001±0.0006 0.002±0.0004 Yonagusuku-mura, OKINAWA 28 86.5 0.001±0.0006 0.001±0.0005 October, 1984 Sapporo, HOKKAIDO 32 76.5 0.001±0.0006 0.002±0.0005 Aomori, AOMORI 32 102.0 0.008±0.0009 0.002±0.0005 Yamagata, YAMAGATA 32 60.8 0.002±0.0006 0.001±0.0004 Mito, IBARAGI 32 70.5 0.002±0.0006 0.001±0.0004 </td <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | Tottori, TOTTORI 29 103.5 0.005±0.0008 0.002±0.0005 Matsue, SHIMANE 32 89.8 0.004±0.0007 0.001±0.0004 Hiroshima, HIROSHIMA 31 117.7 0.004±0.0006 0.001±0.0005 Matsuyama, EHIME 32 67.0 0.001±0.0006 0.001±0.0005 Dazaifu, FUKUOKA 31 163.2 0.002±0.0006 0.000±0.0004 Saga, SAGA 30 70.9 0.001±0.0006 0.000±0.0004 Nagasaki, NAGASAKI 31 130.0 0.001±0.0006 0.002±0.0004 Yonagusuku-mura, OKINAWA 28 86.5 0.001±0.0006 0.001±0.0005 October, 1984 Sapporo, HOKKAIDO 32 76.5 0.001±0.0006 0.003±0.0006 Aomori, AOMORI 32 102.0 0.008±0.0009 0.002±0.0005 Yamagata, YAMAGATA 32 60.8 0.002±0.0006 0.001±0.0004 Ookuma-machi, FUKUSHIMA 30 189.3 0.002±0.0006 0.001±0.0004 Mito, IBARAGI 32 70.5 0.002±0.0006 0.001±0. | | | ===:= | | | | Matsue, SHIMANE 32 89.8 0.004±0.0007 0.001±0.0004 Hiroshima, HIROSHIMA 31 117.7 0.004±0.0008 0.001±0.0005 Matsuyama, EHIME 32 67.0 0.001±0.0006 0.001±0.0005 Dazaifu, FUKUOKA 31 163.2 0.002±0.0006 0.000±0.0004 Saga, SAGA 30 70.9 0.001±0.0006 0.000±0.0004 Nagasaki, NAGASAKI 31 130.0 0.001±0.0006 0.002±0.0004 Yonagusuku-mura, OKINAWA 28 86.5 0.001±0.0006 0.002±0.0004 Yonagusuku-mura, OKINAWA 28 76.5 0.001±0.0006 0.003±0.0006 Aomori, AOMORI 32 76.5 0.001±0.0006 0.003±0.0006 Aomori, AOMORI 32 102.0 0.008±0.0009 0.002±0.0005 Yamagata, YAMAGATA 32 60.8 0.002±0.0006 0.001±0.0004 Ookuma-machi, FUKUSHIMA 30 189.3 0.002±0.0006 0.001±0.0004 Mito, IBARAGI 32 70.5 0.002±0.0006 0.001±0.0004 <tr< td=""><td></td><td></td><td></td><td></td><td></td></tr<> | | | | | | | Hiroshima, HIROSHIMA 31 117.7 0.004±0.0008 0.001±0.0005 Matsuyama, EHIME 32 67.0 0.001±0.0006 0.001±0.0005 Dazaifu, FUKUOKA 31 163.2 0.002±0.0006 0.000±0.0004 Saga, SAGA 30 70.9 0.001±0.0006 0.000±0.0004 Nagasaki, NAGASAKI 31 130.0 0.001±0.0006 0.002±0.0004 Yonagusuku-mura, OKINAWA 28 86.5 0.001±0.0006 0.001±0.0005 October, 1984 Sapporo, HOKKAIDO 32 76.5 0.001±0.0006 0.002±0.0005 Onagawa-machi, MIYAGI 33 136.5 0.008±0.0009 0.002±0.0005 Yamagata, YAMAGATA 32 60.8 0.002±0.0006 0.001±0.0005 Yamagata, YAMAGATA 32 60.8 0.002±0.0006 0.001±0.0004 Ookuma-machi, FUKUSHIMA 30 189.3 0.003±0.0006 0.001±0.0004 Mito, IBARAGI 32 70.5 0.002±0.0006 0.001±0.0004 Shinjuku, TOKYO 32 91.7 0.003±0.0006 0.001±0.0004 Shinjuku, TOKYO 32 91.7 0.003±0.0007 0.002±0.0005 Yokohama, KANAGAWA 33 86.6 0.002±0.0006 0.001±0.0005 Shizuoka, SHIZUOKA 32 34.0 0.001±0.0006 0.001±0.0006 Nagoya, AICHI 32 42.0 0.002±0.0006 0.000±0.0004 Kyoto, KYOTO 32 60.7 0.002±0.0006 0.000±0.0004 | | 20 | 00.0 | 0.00410.0007 | 0.003.10.0004 | | Matsuyama, EHIME 32 67.0 0.001±0.0006 0.001±0.0005 Dazaifu, FUKUOKA 31 163.2 0.002±0.0006 0.000±0.0004 Saga, SAGA 30 70.9 0.001±0.0006 0.000±0.0004 Nagasaki, NAGASAKI 31 130.0 0.001±0.0006 0.002±0.0004 Yonagusuku-mura, OKINAWA 28 86.5 0.001±0.0006 0.002±0.0004 Yonagusuku-mura, OKINAWA 28 76.5 0.001±0.0006 0.001±0.0005 October, 1984 Sapporo, HOKKAIDO 32 76.5 0.001±0.0006 0.003±0.0006 Aomori, AOMORI 32 102.0 0.008±0.0009 0.002±0.0005 Onagawa-machi, MIYAGI 33 136.5 0.008±0.0009 0.002±0.0005 Yamagata, YAMAGATA 32 60.8 0.002±0.0006 0.001±0.0004 Ookuma-machi, FUKUSHIMA 30 189.3 0.002±0.0006 0.001±0.0004 Mito, IBARAGI 32 70.5 0.002±0.0006 0.001±0.0004 Yokohama, KANAGAWA 33 86.6 0.002±0.0006 < | | | | | | | Dazaifu, FUKUOKA 31 163.2 0.002±0.0006 0.000±0.0004 Saga, SAGA 30 70.9 0.001±0.0006 0.000±0.0004 Nagasaki, NAGASAKI 31 130.0 0.001±0.0006 0.002±0.0004 Yonagusuku-mura, OKINAWA 28 86.5 0.001±0.0006 0.001±0.0005 October, 1984 Sapporo, HOKKAIDO 32 76.5 0.001±0.0006 0.003±0.0006 Aomori, AOMORI 32 102.0 0.008±0.0009 0.002±0.0005 Onagawa-machi, MIYAGI 33 136.5 0.008±0.0009 0.002±0.0005 Yamagata, YAMAGATA 32 60.8 0.002±0.0006 0.001±0.0004 Ookuma-machi, FUKUSHIMA 30 189.3 0.003±0.0006 0.001±0.0004 Mito, IBARAGI 32 70.5 0.002±0.0006 0.001±0.0004 Shinjuku, TOKYO 32 91.7 0.003±0.0007 0.002±0.0005 Yokohama, KANAGAWA 33 86.6 0.002±0.0006 0.001±0.0005 Shizuoka, SHIZUOKA 32 34.0 0.001±0.0006 0.00 | • | | | | | | Saga, SAGA 30 70.9 0.001±0.0006 0.000±0.0004 Nagasaki, NAGASAKI
Yonagusuku-mura, OKINAWA 31 130.0 0.001±0.0006 0.002±0.0004 October, 1984
Sapporo, HOKKAIDO 32 76.5 0.001±0.0006 0.003±0.0006 Aomori, AOMORI 32 102.0 0.008±0.0009 0.002±0.0005 Onagawa-machi, MIYAGI 33 136.5 0.008±0.0009 0.002±0.0005 Yamagata, YAMAGATA 32 60.8 0.002±0.0006 0.001±0.0004 Ookuma-machi, FUKUSHIMA 30 189.3 0.003±0.0006 0.001±0.0004 Mito, IBARAGI 32 70.5 0.002±0.0006 0.001±0.0004 Shinjuku, TOKYO 32 91.7 0.003±0.0007 0.002±0.0005 Yokohama, KANAGAWA 33 86.6 0.002±0.0006 0.001±0.0005 Fukui, FUKUI 32 89.3 0.002±0.0006 0.002±0.0005 Shizuoka, SHIZUOKA 32 34.0 0.001±0.0006 0.000±0.0004 Nagoya, AICHI 32 42.0 0.002±0.0006 0.000±0.0004 | | | | | | | Nagasaki, NAGASAKI 31 130.0 0.001±0.0006 0.002±0.0004 Yonagusuku-mura, OKINAWA 28 86.5 0.001±0.0006 0.001±0.0005 October, 1984 Sapporo, HOKKAIDO 32 76.5 0.001±0.0006 0.003±0.0006 Aomori, AOMORI 32 102.0 0.008±0.0009 0.002±0.0005 Onagawa-machi, MIYAGI 33 136.5 0.008±0.0009 0.002±0.0005 Yamagata, YAMAGATA 32 60.8 0.002±0.0006 0.001±0.0004 Ookuma-machi, FUKUSHIMA 30 189.3 0.003±0.0006 0.001±0.0004 Mito, IBARAGI 32 70.5 0.002±0.0006 0.001±0.0004 Shinjuku,
TOKYO 32 91.7 0.003±0.0007 0.002±0.0005 Yokohama, KANAGAWA 33 86.6 0.002±0.0006 0.001±0.0005 Shizuoka, SHIZUOKA 32 34.0 0.001±0.0009 0.001±0.0006 Nagoya, AICHI 32 42.0 0.002±0.0006 0.000±0.0004 Kyoto, KYOTO 32 60.7 0.002±0.0006 0.000± | Dazaifu, FUKUOKA | 31 | 163.2 | 0.002±0.0006 | 0.000±0.0004 | | Yonagusuku-mura, OKINAWA 28 86.5 0.001±0.0006 0.001±0.0005 October, 1984 32 76.5 0.001±0.0006 0.003±0.0006 Aomori, AOMORI 32 102.0 0.008±0.0009 0.002±0.0005 Onagawa-machi, MIYAGI 33 136.5 0.008±0.0009 0.002±0.0005 Yamagata, YAMAGATA 32 60.8 0.002±0.0006 0.001±0.0004 Ookuma-machi, FUKUSHIMA 30 189.3 0.003±0.0006 0.001±0.0004 Mito, IBARAGI 32 70.5 0.002±0.0006 0.001±0.0004 Shinjuku, TOKYO 32 91.7 0.003±0.0007 0.002±0.0005 Yokohama, KANAGAWA 33 86.6 0.002±0.0006 0.001±0.0005 Fukui, FUKUI 32 89.3 0.002±0.0006 0.002±0.0005 Shizuoka, SHIZUOKA 32 34.0 0.001±0.0009 0.001±0.0004 Nagoya, AICHI 32 42.0 0.002±0.0006 0.000±0.0004 Kyoto, KYOTO 32 60.7 0.002±0.0006 0.000±0.0004 | Saga, SAGA | 30 | 70.9 | 0.001±0.0006 | 0.000±0.0004 | | Yonagusuku-mura, OKINAWA 28 86.5 0.001±0.0006 0.001±0.0005 October, 1984 32 76.5 0.001±0.0006 0.003±0.0006 Aomori, AOMORI 32 102.0 0.008±0.0009 0.002±0.0005 Onagawa-machi, MIYAGI 33 136.5 0.008±0.0009 0.002±0.0005 Yamagata, YAMAGATA 32 60.8 0.002±0.0006 0.001±0.0004 Ookuma-machi, FUKUSHIMA 30 189.3 0.003±0.0006 0.001±0.0004 Mito, IBARAGI 32 70.5 0.002±0.0006 0.001±0.0004 Shinjuku, TOKYO 32 91.7 0.003±0.0007 0.002±0.0005 Yokohama, KANAGAWA 33 86.6 0.002±0.0006 0.001±0.0005 Fukui, FUKUI 32 89.3 0.002±0.0006 0.002±0.0005 Shizuoka, SHIZUOKA 32 34.0 0.001±0.0009 0.001±0.0004 Nagoya, AICHI 32 42.0 0.002±0.0006 0.000±0.0004 Kyoto, KYOTO 32 60.7 0.002±0.0006 0.000±0.0004 | Nagasaki, NAGASAKI | 31 | 130.0 | 0.001±0.0006 | 0.002±0.0004 | | Sapporo, HOKKAIDO 32 76.5 0.001±0.0006 0.003±0.0006 Aomori, AOMORI 32 102.0 0.008±0.0009 0.002±0.0005 Onagawa-machi, MIYAGI 33 136.5 0.008±0.0009 0.002±0.0005 Yamagata, YAMAGATA 32 60.8 0.002±0.0006 0.001±0.0004 Ookuma-machi, FUKUSHIMA 30 189.3 0.003±0.0006 0.001±0.0004 Mito, IBARAGI 32 70.5 0.002±0.0006 0.001±0.0004 Shinjuku, TOKYO 32 91.7 0.003±0.0007 0.002±0.0005 Yokohama, KANAGAWA 33 86.6 0.002±0.0006 0.001±0.0005 Fukui, FUKUI 32 89.3 0.002±0.0006 0.002±0.0005 Shizuoka, SHIZUOKA 32 34.0 0.001±0.0009 0.001±0.0004 Nagoya, AICHI 32 42.0 0.002±0.0006 0.000±0.0004 Kyoto, KYOTO 32 60.7 0.002±0.0006 0.000±0.0004 | | 28 | 86.5 | 0.001±0.0006 | 0.001±0.0005 | | Sapporo, HOKKAIDO 32 76.5 0.001±0.0006 0.003±0.0006 Aomori, AOMORI 32 102.0 0.008±0.0009 0.002±0.0005 Onagawa-machi, MIYAGI 33 136.5 0.008±0.0009 0.002±0.0005 Yamagata, YAMAGATA 32 60.8 0.002±0.0006 0.001±0.0004 Ookuma-machi, FUKUSHIMA 30 189.3 0.003±0.0006 0.001±0.0004 Mito, IBARAGI 32 70.5 0.002±0.0006 0.001±0.0004 Shinjuku, TOKYO 32 91.7 0.003±0.0007 0.002±0.0005 Yokohama, KANAGAWA 33 86.6 0.002±0.0006 0.001±0.0005 Fukui, FUKUI 32 89.3 0.002±0.0006 0.002±0.0005 Shizuoka, SHIZUOKA 32 34.0 0.001±0.0009 0.001±0.0004 Nagoya, AICHI 32 42.0 0.002±0.0006 0.000±0.0004 Kyoto, KYOTO 32 60.7 0.002±0.0006 0.000±0.0004 | October, 1984 | | | | | | Aomori, AOMORI 32 102.0 0.008±0.0009 0.002±0.0005 Onagawa-machi, MIYAGI 33 136.5 0.008±0.0009 0.002±0.0005 Yamagata, YAMAGATA 32 60.8 0.002±0.0006 0.001±0.0004 Ookuma-machi, FUKUSHIMA 30 189.3 0.003±0.0006 0.001±0.0004 Mito, IBARAGI 32 70.5 0.002±0.0006 0.001±0.0004 Shinjuku, TOKYO 32 91.7 0.003±0.0007 0.002±0.0005 Yokohama, KANAGAWA 33 86.6 0.002±0.0006 0.001±0.0005 Fukui, FUKUI 32 89.3 0.002±0.0006 0.002±0.0005 Shizuoka, SHIZUOKA 32 34.0 0.001±0.0009 0.001±0.0004 Nagoya, AICHI 32 42.0 0.002±0.0006 0.000±0.0004 Kyoto, KYOTO 32 60.7 0.002±0.0006 0.000±0.0004 | | 32 | 76.5 | 0.001 ± 0.0006 | 0.003±0.0006 | | Onagawa-machi, MIYAGI 33 136.5 0.008±0.0009 0.002±0.0005 Yamagata, YAMAGATA 32 60.8 0.002±0.0006 0.001±0.0004 Ookuma-machi, FUKUSHIMA 30 189.3 0.003±0.0006 0.001±0.0004 Mito, IBARAGI 32 70.5 0.002±0.0006 0.001±0.0004 Shinjuku, TOKYO 32 91.7 0.003±0.0007 0.002±0.0005 Yokohama, KANAGAWA 33 86.6 0.002±0.0006 0.001±0.0005 Fukui, FUKUI 32 89.3 0.002±0.0006 0.002±0.0005 Shizuoka, SHIZUOKA 32 34.0 0.001±0.0009 0.001±0.0006 Nagoya, AICHI 32 42.0 0.002±0.0006 0.000±0.0004 Kyoto, KYOTO 32 60.7 0.002±0.0006 0.000±0.0004 | | | | | | | Yamagata, YAMAGATA 32 60.8 0.002±0.0006 0.001±0.0004 Ookuma-machi, FUKUSHIMA 30 189.3 0.003±0.0006 0.001±0.0004 Mito, IBARAGI 32 70.5 0.002±0.0006 0.001±0.0004 Shinjuku, TOKYO 32 91.7 0.003±0.0007 0.002±0.0005 Yokohama, KANAGAWA 33 86.6 0.002±0.0006 0.001±0.0005 Fukui, FUKUI 32 89.3 0.002±0.0006 0.002±0.0005 Shizuoka, SHIZUOKA 32 34.0 0.001±0.0009 0.001±0.0006 Nagoya, AICHI 32 42.0 0.002±0.0006 0.000±0.0004 Kyoto, KYOTO 32 60.7 0.002±0.0006 0.000±0.0004 | | | | | | | Ookuma-machi, FUKUSHIMA 30 189.3 0.003±0.0006 0.001±0.0004 Mito, IBARAGI 32 70.5 0.002±0.0006 0.001±0.0004 Shinjuku, TOKYO 32 91.7 0.003±0.0007 0.002±0.0005 Yokohama, KANAGAWA 33 86.6 0.002±0.0006 0.001±0.0005 Fukui, FUKUI 32 89.3 0.002±0.0006 0.002±0.0005 Shizuoka, SHIZUOKA 32 34.0 0.001±0.0009 0.001±0.0006 Nagoya, AICHI 32 42.0 0.002±0.0006 0.000±0.0004 Kyoto, KYOTO 32 60.7 0.002±0.0006 0.000±0.0004 | | | | | | | Mito, IBARAGI 32 70.5 0.002±0.0006 0.001±0.0004 Shinjuku, TOKYO 32 91.7 0.003±0.0007 0.002±0.0005 Yokohama, KANAGAWA 33 86.6 0.002±0.0006 0.001±0.0005 Fukui, FUKUI 32 89.3 0.002±0.0006 0.002±0.0005 Shizuoka, SHIZUOKA 32 34.0 0.001±0.0009 0.001±0.0006 Nagoya, AICHI 32 42.0 0.002±0.0006 0.000±0.0004 Kyoto, KYOTO 32 60.7 0.002±0.0006 0.000±0.0004 | | | | | | | Shinjuku, TOKYO 32 91.7 0.003±0.0007 0.002±0.0005 Yokohama, KANAGAWA 33 86.6 0.002±0.0006 0.001±0.0005 Fukui, FUKUI 32 89.3 0.002±0.0006 0.002±0.0005 Shizuoka, SHIZUOKA 32 34.0 0.001±0.0009 0.001±0.0006 Nagoya, AICHI 32 42.0 0.002±0.0006 0.000±0.0004 Kyoto, KYOTO 32 60.7 0.002±0.0006 0.000±0.0004 | Ookuma-machi, FUKUSHIMA | 30 | 189.3 | 0.003±0.0000 | 0.001±0.0004 | | Yokohama, KANAGAWA 33 86.6 0.002±0.0006 0.001±0.0005 Fukui, FUKUI 32 89.3 0.002±0.0006 0.002±0.0005 Shizuoka, SHIZUOKA 32 34.0 0.001±0.0009 0.001±0.0006 Nagoya, AICHI 32 42.0 0.002±0.0006 0.000±0.0004 Kyoto, KYOTO 32 60.7 0.002±0.0006 0.000±0.0004 | | | | | | | Fukui, FUKUI 32 89.3 0.002±0.0006 0.002±0.0005 Shizuoka, SHIZUOKA 32 34.0 0.001±0.0009 0.001±0.0006 Nagoya, AICHI 32 42.0 0.002±0.0006 0.000±0.0004 Kyoto, KYOTO 32 60.7 0.002±0.0006 0.000±0.0004 | | | | | | | Shizuoka, SHIZUOKA 32 34.0 0.001±0.0009 0.001±0.0006 Nagoya, AICHI 32 42.0 0.002±0.0006 0.000±0.0004 Kyoto, KYOTO 32 60.7 0.002±0.0006 0.000±0.0004 | Yokohama, KANAGAWA | | | | | | Shizuoka, SHIZUOKA 32 34.0 0.001±0.0009 0.001±0.0006 Nagoya, AICHI 32 42.0 0.002±0.0006 0.000±0.0004 Kyoto, KYOTO 32 60.7 0.002±0.0006 0.000±0.0004 | Fukui, FUKUI | 32 | 89.3 | 0.002±0.0006 | 0.002 ± 0.0005 | | Kyoto, KYOTO 32 60.7 0.002±0.0006 0.000±0.0004 | | | 34.0 | 0.001±0.0009 | 0.001±0.0006 | | Kyoto, KYOTO 32 60.7 0.002±0.0006 0.000±0.0004 | Nagoya, AICHI | 32 | 42.0 | 0.002±0.0006 | 0.000±0.0004 | | [| | | | | | | | Kobe, HYOGO | 33 | 38.8 | 0.003±0.0007 | 0.002±0.0006 | | | Duration | Precipitation | ⁹⁰ Sr | ¹³⁷ Cs | |--------------------------|----------|---------------|------------------------------|--------------------| | Location | (days) | (mm) | (mCi/km²) | (mCi/km²) | | | 34 | 30.0 | 0.002±0.0007 | 0.000±0.0004 | | Wakayama, WAKAYAMA | 32 | 98.9 | 0.005±0.0008 | 0.003±0.0006 | | Tottori, TOTTORI | 32
31 | 49.5 | 0.000±0.0006 | 0.000±0.0004 | | Matsue, SHIMANE | | 75.9 | 0.001±0.0007 | 0.000 ± 0.0005 | | Hiroshima, HIROSHIMA | 32 | 50.5 | 0.000±0.0007 | 0.000±0.0005 | | Matsuyama, EHIME | 32 | 50.5 | | | | Dazaifu, FUKUOKA | 32 | 71.1 | 0.000±0.0008 | 0.001±0.0006 | | Saga, SAGA | 31 | 0.0 | 0.001 ± 0.0007 | 0.000±0.0004 | | Nagasaki, NAGASAKI | 32 | 16.0 | 0.002±0.0007 | 0.002±0.0005 | | Yonagusuku-mura, OKINAWA | 31 | 125.0 | 0.000±0.0006 | 0.000±0.0004 | | Novenber, 1984 | | | | | | Sapporo, HOKKAIDO | 30 | 43.0 | 0.001 ± 0.0006 | 0.004±0.0006 | | Aomori, AOMORI | 31 | 57.8 | 0.006±0.0008 | 0.002±0.0005 | | Onagawa-machi, MIYAGI | 31 | 48.0 | 0.007±0.0008 | 0.002±0.0005 | | Yamagata, YAMAGATA | 31 | 51.4 | 0.001 ± 0.0006 | 0.001 ± 0.0004 | | Ookuma-machi, FUKUSHIMA | 31 | 76.9 | 0.001±0.0006 | 0.000±0.0004 | | Mito, IBARAGI | 31 | 46.5 | 0.001±0.0006 | 0.001 ± 0.0005 | | Shinjuku, TOKYO | 31 | 55.0 | 0.004±0.0007 | 0.001 ± 0.0005 | | Yokohama, KANAGAWA | 32 | 64.1 | 0.002±0.0006 | 0.001 ± 0.0005 | | Fukui, FUKUI | 31 | 145.5 | 0.001±0.0006 | 0.001 ± 0.0005 | | Shizuoka, SHIZUOKA | 31 | 78.0 | 0.002±0.0007 | 0.001 ± 0.0004 | | | 21 | 62.8 | 0.001±0.0006 | 0.000±0.0004 | | Nagoya, AICHI | 31 | 36.5 | 0.001±0.0006 | 0.000±0.0001 | | Kyoto, KYOTO | 30 | | 0.001±0.0006 | 0.001±0.0005 | | Kobe, HYOGO | 31 | 37.4 | | 0.002±0.0005 | | Wakayama, WAKAYAMA | 34 | 49.7 | 0.000±0.0005 | 0.001±0.0005 | | Tottori, TOTTORI | 31 | 138.7 | 0.003±0.0007 | 0.00210.0003 | | Matsue, SHIMANE | 31 | 96.5 | 0.003±0.0007 | 0.001 ± 0.0005 | | Hiroshima, HIROSHIMA | 31 | 42.2 | 0.003±0.0008 | 0.001 ± 0.0005 | | Matsuyama, EHIME | 30 | 25.5 | 0.001 ± 0.0006 | 0.000 ± 0.0004 | | Dazaifu, FUKUOKA | 31 | 54.3 | 0.001 ± 0.0006 | 0.000 ± 0.0005 | | Saga, SAGA | 29 | 71.0 | 0.001 ± 0.0006 | 0.000 ± 0.0004 | | Nagasaki, NAGASAKI | 31 | 59.5 | 0.002±0.0006 | 0.000±0.0004 | | Yonagusuku-mura, OKINAWA | 34 | 119.0 | 0.001 ± 0.0007 | 0.001 ± 0.0004 | | December, 1984 | | | | | | | 28 | 63.5 | 0.001±0.0006 | 0.001±0.0006 | | Sapporo, HOKKAIDO | 26
38 | 149.2 | 0.001±0.0000
0.005±0.0007 | 0.001±0.0006 | | Aomori, AOMORI | 38
28 | 53.0 | 0.005±0.0007 | 0.002±0.0005 | | Onagawa-machi, MIYAGI | 28
35 | 64.5 | 0.003±0.0007 | 0.002±0.0006 | | Yamagata, YAMAGATA | | 66.5 | 0.002±0.0007
0.002±0.0006 | 0.000±0.0006 | | Ookuma-machi, FUKUSHIMA | 28 | 00.5 | 0.00210.0000 | 0.00020.0000 | | Mito, IBARAGI | 36 | 63.0 | 0.001±0.0006 | 0.001±0.0006 | | Shinjuku, TOKYO | 35 | 76.0 | 0.002±0.0006 | 0.002±0.0006 | | Yokohama, KANAGAWA | 35 | 86.0 | 0.002±0.0006 | 0.002±0.0005 |
| Fukui, FUKUI | 36 | 451.9 | 0.004 ± 0.0007 | 0.006±0.0008 | | Shizuoka, SHIZUOKA | 35 | 49.0 | 0.000±0.0006 | 0.000±0.0004 | | Name AICLU | 38 | 43.0 | 0.002±0.0006 | 0.001±0.0006 | | Nagoya, AICHI | 38
38 | 58.3 | 0.002±0.0006 | 0.001±0.0006 | | Kyoto, KYOTO | 36
28 | 37.4 | 0.002±0.0006 | 0.001±0.0005 | | Kobe, HYOGO | 20 | J1.4 | 5.50220.0000 | | | Location | Duration
(days) | Precipitation
(mm) | ⁹⁰ Sr
(mCi/km²) | 137Cs
(mCi/km²) | |--------------------------|--------------------|-----------------------|-------------------------------|--------------------| | Wakayama, WAKAYAMA | 36 | 40.1 | 0.002±0.0007 | 0.001±0.0005 | | Tottori, TOTTORI | 36 | 1035.5 | 0.006±0.0008 | 0.008±0.008 | | Matsue, SHIMANE | 31 | 159.3 | 0.003±0.0007 | 0.006±0.0008 | | Hiroshima, HIROSHIMA | 38 | 25.7 | 0.004 ± 0.0007 | 0.002±0.0005 | | Matsuyama, EHIME | 29 | 34.0 | 0.001 ± 0.0006 | 0.002±0.0005 | | Dazaifu, FUKUOKA | 35 | 88.1 | 0.001 ± 0.0006 | 0.003±0.0006 | | Saga, SAGA | 36 | 70.4 | 0.001±0.0006 | 0.001±0.0004 | | Nagasaki, NAGASAKI | 35 | 57.5 | 0.001±0.0006 | 0.000±0.0004 | | Yonagusuku-mura, OKINAWA | 36 | 73.0 | 0.000±0.0010 | 0.003±0.0009 | # (1)-2 Strontium-90 and Cesium-137 in Rain and dry fallout (for WHO program) (from Jul. 1984 to Jan. 1985) —continued from No. 68 of this publication— Table (1)-2: Strontium-90 and Cesium-137 Rain and dry fallout | Location | Duration | Precipitation | ⁹⁰ Sr
(mCi/km²) | ¹³⁷ Cs
(mCi/km²) | |----------------------|----------|---------------|-------------------------------|--------------------------------------| | | (days) | (mm) | (mC1/km) | (mC1/km) | | July, 1984 | | | | | | Niigata, NIIGATA | 31 | 230.9 | 0.003 ± 0.0007 | 0.002±0.0005 | | Kanazawa, ISHIKAWA | 30 | 225.0 | 0.002 ± 0.0006 | 0.001 ± 0.0004 | | Nagano, NAGANO | 31 | 231.1 | 0.002±0.0006 | 0.000 ± 0.0004 | | Osaka, OSAKA | 31 | 140.1 | 0.004 ± 0.0007 | 0.001 ± 0.0004 | | Okayama, OKAYAMA | 31 | 47.1 | 0.000 ± 0.0005 | 0.000±0.0004 | | Yamaguchi, YAMAGUCHI | 31 | 127.5 | 0.001±0.0006 | 0.002±0.0005 | | Kochi, KOCHI | 32 | 217.9 | 0.007±0.0008 | 0.001 ± 0.0005 | | Kagoshima, KAGOSHIMA | 31 | 87.5 | 0.000±0.0005 | 0.002±0.0005 | | M 1004 | | | | | | August, 1984 | 32 | 95.3 | 0.001±0.0006 | 0.000±0.0004 | | Akita, AKITA | 32
32 | 31.2 | 0.001±0.0000
0.003±0.0007 | 0.000±0.0004
0.004±0.0007 | | Niigata, NIIGATA | | | | | | Chiba, CHIBA | 31 | 3.5 | 0.000±0.0005 | 0.002±0.0006 | | Kanazawa, ISHIKAWA | 32 | 99.0 | 0.004±0.0007 | 0.002±0.0005 | | Nagano, NAGANO | 32 | 16.4 | 0.002±0.0006 | 0.000±0.0004 | | Osaka, OSAKA | 32 | 44.3 | 0.004 ± 0.0007 | 0.001 ± 0.0005 | | Okayama, OKAYAMA | 32 | 51.0 | 0.003±0.0006 | 0.000 ± 0.0004 | | Yamaguchi, YAMAGUCHI | 32 | 123.5 | 0.004 ± 0.0007 | 0.002 ± 0.0005 | | Kochi, KOCHI | 32 | 330.1 | 0.004 ± 0.0007 | 0.001 ± 0.0005 | | Kagoshima, KAGOSHIMA | 32 | 332.5 | 0.004±0.0009 | 0.002±0.0006 | | September, 1984 | | | | | | Akita, AKITA | 31 | 184.8 | 0.002 ± 0.0007 | 0.002±0.0005 | | Niigata, NIIGATA | 31 | 188.0 | 0.003±0.0006 | 0.001 ± 0.0005 | | | 32 | 67.7 | 0.002±0.0007 | 0.001 ± 0.0003 | | Chiba, CHIBA | | 122.5 | 0.002±0.0007 | 0.001±0.0004 | | Kanazawa, ISHIKAWA | 30 | | | | | Nagano, NAGANO | 31 | 100.6 | 0.002±0.0006 | 0.001±0.0004 | | Osaka, OSAKA | 31 | 105.2 | 0.002 ± 0.0007 | 0.002 ± 0.0005 | | Okayama, OKAYAMA | 31 | 85.6 | 0.004 ± 0.0007 | 0.000±0.0005 | | Yamaguchi, YAMAGUCHI | 31 | 113.0 | 0.003±0.0006 | 0.001 ± 0.0004 | | Kochi, KOCHI | 31 | 89.9 | 0.004 ± 0.0007 | 0.001 ± 0.0005 | | Kagoshima, KAGOSHIMA | 31 | 157.5 | 0.003±0.0009 | 0.001 ± 0.0006 | | October, 1984 | | | | | | Akita, AKITA | 32 | 193.3 | 0.001±0.0005 | 0.001 ± 0.0005 | | Niigata, NIIGATA | 32 | 92.7 | 0.001±0.0005 | 0.001±0.0005 | | = | | 60.3 | 0.000±0.0003 | 0.001 ± 0.0003
0.001 ± 0.0004 | | Chiba, CHIBA | 32 | | | | | Kanazawa, ISHIKAWA | 33 | 122.0 | 0.005±0.0007 | 0.002±0.0005 | | Nagano, NAGANO | 32 | 48.3 | 0.002±0.0006 | 0.000±0.0004 | | Osaka, OSAKA | 32 | 50.6 | 0.001±0.0006 | 0.000±0.0004 | | Okayama, OKAYAMA | 32 | 60.0 | 0.000±0.0005 | 0.000 ± 0.0004 | | Yamaguchi, YAMAGUCHI | 32 | 42.0 | 0.005 ± 0.0008 | 0.001 ± 0.0005 | | Location | Duration
(days) | Precipitation (mm) | ⁹⁰ Sr
(mCi/km²) | 137Cs
(mCi/km²) | |----------------------|--------------------|--------------------|-------------------------------|--------------------| | Kochi, KOCHI | 32 | 130.9 | 0.003±0.0006 | 0.001±0.0004 | | Kagoshima, KAGOSHIMA | 32 | 29.0 | 0.002±0.0007 | 0.002±0.0005 | | Novenber, 1984 | | | | | | Akita, AKITA | 31 | 130.9 | 0.002 ± 0.0006 | 0.003±0.0006 | | Niigata, NIIGATA | 31 | 92.3 | 0.002±0.0006 | 0.002 ± 0.0005 | | Chiba, CHIBA | 33 | 65.2 | 0.000±0.0006 | 0.001 ± 0.0004 | | Kanazawa, ISHIKAWA | 31 | 204.0 | 0.002±0.0006 | 0.002 ± 0.0005 | | Nagano, NAGANO | 31 | 41.0 | 0.002±0.0006 | 0.000 ± 0.0004 | | Osaka, OSAKA | 31 | 27.3 | 0.001±0.0006 | 0.000±0.0004 | | Okayama, OKAYAMA | 31 | 31.9 | 0.000±0.0005 | 0.000 ± 0.0004 | | Yamaguchi, YAMAGUCHI | 30 | 63.5 | 0.001 ± 0.0006 | 0.000 ± 0.0004 | | Kochi, KOCHI | 31 | 108.7 | 0.004 ± 0.0007 | 0.001 ± 0.0005 | | Kagoshima, KAGOSHIMA | 30 | 27.0 | 0.002±0.0007 | 0.001 ± 0.0005 | | December, 1984 | | | | | | Akita, AKITA | 35 | 103.8 | 0.002±0.0006 | 0.002±0.0007 | | Niigata, NIIGATA | 35 | 239.3 | 0.003 [±] 0.0007 | 0.003±0.0005 | | Chiba, CHIBA | 33 | 68.6 | 0.000±0.0006 | 0.001 ± 0.0005 | | Kanazawa, ISHIKAWA | 29 | 294.0 | 0.003±0.0007 | 0.005 ± 0.0007 | | Nagano, NAGANO | 35 | 43.9 | 0.002±0.0006 | 0.001 ± 0.0004 | | Osaka, OSAKA | 35 | 55.0 | 0.003±0.0007 | 0.003±0.0006 | | Okayama, OKAYAMA | 36 | 43.6 | 0.001 ± 0.0006 | 0.002±0.0005 | | Yamaguchi, YAMAGUCHI | 32 | 106.0 | 0.002±0.0006 | 0.003±0.0005 | | Kochi, KOCHI | 36 | 89.0 | 0.003±0.0007 | 0.001 ± 0.0004 | | Kagoshima, KAGOSHIMA | 39 | 58.0 | 0.007±0.0008 | 0.003±0.0005 | | January, 1985 | | | | | | Chiba, CHIBA | 29 | 9.7 | 0.001±0.0007 | 0.003±0.0006 | # (2) Strontium-90 and Cesium-137 in Airborne dust (from Apr. 1984 to Sep. 1984) -continued from No. 68 of this publication- Table (2): Strontium-90 and Cesium-137 in Airborne dust | Location | Sampling
Period | Absorption volume(m³) | ⁹⁰ Sr
(10 ⁻³ pCi/m ³) | ¹³⁷ Cs
(10 ⁻³ pCi/m ³) | |-------------------------|--------------------|-----------------------|--|---| | April~June, 1984 | | | | | | Mito, IBARAGI | 4~6 | 12,677 | 0.02±0.02 | 0.01 ± 0.01 | | July~September, 1984 | | | | | | Ookuma-machi, FUKUSHIMA | 7~9 | 10,642 | 0.0 ± 0.02 | 0.03 ± 0.02 | | Mito, IBARAGI | 7~9 | 12,246 | 0.0 ± 0.02 | 0.0 ± 0.02 | | Nigata, NIGAYA | 7~9 | 14,069 | 0.03 ± 0.02 | 0.01 ± 0.01 | | Fukui, FUKUI | 7~9 | 20,643 | 0.0 ± 0.01 | 0.0 ± 0.01 | | Hamaoka-machi, SHIZUOKA | 7~9 | 11,723 | 0.0 ±0.02 | 0.0 ±0.01 | | Nagoya, AICHI | 7~9 | 9,904 | 0.0 ±0.03 | 0.01±0.01 | | Kyoto, KYOTO | 7~9 | 12,030 | 0.03 ± 0.02 | 0.0 ± 0.01 | | Osaka, OSAKA | 7~9 | 8,289 | 0.0 ± 0.03 | 0.01 ± 0.02 | | Kobe, HYOGO | 7~9 | 10,140 | 0.0 ± 0.02 | 0.01 ± 0.01 | | Tottori, TOTTORI | 7~9 | 8,508 | 0.05±0.03 | 0.0 ± 0.02 | | Hiroshima, HIROSHIMA | 7~9 | 10,538 | 0.02±0.03 | 0.01±0.02 | | Nagasaki, NAGASAKI | 7~9 | 13,670 | 0.01 ± 0.02 | 0.01 ± 0.02 | # (3) Strontium-90 and Cesium-137 in Service water (from Jun. 1984 to Dec. 1984) -continued from No. 68 of this publication- Table (3): Strontium-90 and Cesium-137 in Service water | Table (3): Strontium-90 and Cesium-137 in Service water | | | | |---|---|---------------------------------------|--| | рН | ⁹⁰ Sr
(pCi/ <i>l</i>) | ¹³⁷ Cs
(pCi/ <i>l</i>) | | | | | | | | | | | | | 7.7 | 0.18±0.007 | 0.01 ±0.003 | | | | | | | | 8.9 | 0.02 ± 0.003 | 0.001 ± 0.002 | | | 6.9 | 0.07±0.005 | 0.01 ± 0.002 | | | 7.0 | 0.16 ± 0.007 | 0.01 ± 0.002 | | | | | | | | | | | | | 7.3 | 0.22±0.007 | 0.001±0.002 | | | | | | | | 7.8 | 0.06±0.005 | 0.001 ± 0.002 | | | | | | | | 7.2 | 0.15 ± 0.007 | 0.003 ± 0.002 | | | 6.9 | 0.17 ± 0.007 | 0.01 ± 0.002 | | | | | | | | 7.7 | 0.09 ± 0.005 | 0.004 ± 0.002 | | | | | | | | 7.0 | 0.01 ± 0.003 | 0.001 ± 0.002 | | | | | | | | 7.1 | 0.07±0.005 | 0.01 ± 0.002 | | | 7.8 | 0.04 ± 0.005 | 0.004 ± 0.002 | | | 7.0 | 0.13±0.006 | 0.003±0.002 | | | 7.1 | 0.04 ± 0.004 | 0.00 ±0.002 | | | 5.7 | 0.12±0.006 | 0.01 ±0.002 | | | 68 | 0.14+0.007 | 0.003±0.002 | | | | | 0.003±0.002 | | | | | 0.00 ±0.002
0.00 ±0.002 | | | | | 0.001±0.002 | | | | | 0.001±0.002
0.004±0.002 | | | 1.1 | 0.00±0.003 | 0.004±0.002 | | | | 7.7 8.9 6.9 7.0 7.3 7.8 7.2 6.9 7.7 7.0 7.1 7.8 7.0 7.1 | pH (pCi/l) 7.7 | | # (4) Strontium-90 and Cesium-137 in Freshwater (from Jul. 1984 to Dec. 1984) —continued from No. 68 of this publication— Table (4): Strontium-90 and Cesium-137 Freshwater | Location | На | ⁹⁰ Sr
(pCi/ <i>l</i>) | 137Cs
(pCi/ <i>l</i>) | |---|-----|--------------------------------------|---------------------------| | (Freshwater) | | | | | July, 1984 | | | | | Ishikari-machi, HOKKAIDOA | 7.3 | 0.14 ± 0.008 | 0.02 ±0.003 | | Akita, AKITA | 7.2 | 0.10 ± 0.006 | 0.02 ±0.003 | | Cantamban 1004 | | | | | September, 1984
Fukushima, FUKUSHIMA | 6.6 | 0.04 ±0.004 | 0.003±0.002 | | | 7.4 | 0.15 ±0.009 | 0.04 ±0.004 | | Mikata-machi, FUKUI | 1.4 | 0.13 10.003 | 0.04 10.004 | | November, 1984 | | | | | Niigata, NIIGATA | 7.2 | 0.19 ±0.008 | 0.02 ± 0.003 | | Shobara, HIROSHIMA | 6.9 | 0.07 ±0.005 | 0.002±0.002 | | December, 1984 | | | | | Suwa-lake, NAGANO | 8.6 | 0.05 ±0.005 | 0.01 ± 0.002 | | Uii.
KYOTO | 6.4 | 0.001 ± 0.002 | 0.004 ± 0.002 | # (5) Strontium-90 and Cesium-137 in Soil (from Jun. 1984 to Dec. 1984) -continued from No. 68 of this publication- Table (5): Strontium-90 and Cesium-137 in Soil | • | Sampling | 9 | ⁰ Sr | ¹³⁷ Cs | | |-------------------------------------|-------------|--------------------|----------------------|--------------------|---------------------| | Location | Depth(cm) | (pCi/kg) | (mCi/km²) | (pCi/kg) | (mCi/km²) | | June, 1984
Tsuyama, OKAYAMA
" | 0~5
5~20 | 26± 3.6
36± 4.0 | 2.0±0.28
4.4±0.49 | 83± 5.4
96± 5.7 | 6.5±0.42
12 ±0.7 | | July, 1984
Aomori, AOMORI
" | 0~5
5~20 | 59± 5.3
9± 2.9 | 2.1±0.19
1 ±0.31 | 35± 4.4
0± 3 | 1.2±0.15
0 ±0.33 | | Katsushika, TOKYO | 0~5 | 27± 3.7 | 1.5±0.21 | 62± 4.6 | 3.4±0.25 | | | 5~20 | 12± 3.1 | 2.4±0.61 | 29± 3.4 | 5.6±0.66 | | Kashiwazaki, NIIGATA | 0~5 | 130± 7 | 10 ±0.5 | 260± 9 | 20 ±0.7 | | " | 5~20 | 200± 8 | 31 ±1.2 | 780±15 | 120 ±2 | | Kanazawa, ISHIKAWA | 0~5 | 240± 9 | 8.1±0.29 | 660±13 | 22 ±0.4 | | " | 5~20 | 190± 8 | 29 ±1.2 | 360±10 | 54 ±1.5 | | Kumatori-machi, OSAKA | 0~5 | 98± 6.4 | 5.6±0.36 | 71± 5 | 4 ±0.28 | | " | 5~20 | 46± 4.6 | 7.7±0.78 | 31± 3.6 | 5.3±0.61 | | Kobe, HYOGO | 0~5 | 46± 5.2 | 2.9±0.33 | 94± 5.9 | 5.9±0.37 | | " | 5~20 | 45± 5.4 | 10 ±1.2 | 63± 5.1 | 14 ±1.1 | | Kokufu-machi, TOTTORI | 0~5 | 4± 2.8 | 0.2±0.15 | 29± 3.5 | 1.5±0.18 | | " | 5~20 | 10± 3.2 | 1.1±0.35 | 14± 2.8 | 1.5±0.31 | | Oota, SHIMANE | 0~5 | 2100±30 | 19 ±0.2 | 5200±40 | 47 ±0.3 | | | 5~20 | 630±14 | 37 ±0.8 | 1600±20 | 92 ±1.2 | | Hiroshima, HIROSHIMA | 0~5 | 6± 2.7 | 0.6±0.29 | 4± 2.2 | 0.4±0.23 | | " | 5~20 | 27± 3.6 | 5.8±0.76 | 68± 4.7 | 14 ±1.0 | | Kochi, KOCHI | 0~5 | 270± 9 | 14 ±0.5 | 830±16 | 42 ±0.8 | | | 5~20 | 180± 8 | 26 ±1.1 | 230± 9 | 33 ±1.2 | | Fukuoka, FUKUOKA | 0~5 | 260± 9 | 10 ±0.4 | 820±15 | 33 ±0.6 | | " | 5~20 | 170± 7 | 32 ±1.4 | 58± 4.9 | 11 ±1.0 | | Obama-machi, NAGASAKI | 0~5 | 240± 9 | 3.3±0.12 | 4400±40 | 60 ±0.5 | | " | 5~20 | 170± 7 | 15 ±0.7 | 740±15 | 66 ±1.3 | | Location | Sampling
Depth(cm) | ⁹⁰ Sr | | ¹³⁷ Cs | | |---|-----------------------|------------------|----------------------|-------------------|--------------------| | | | (pCi/kg) | (mCi/km²) | (pCi/kg) | (mCi/km²) | | August, 1984
Sapporo, HOKKAIDO
" | 0~5
5~20 | 310± 9
170± 7 | 13 ±0.4
31 ±1.3 | 810±16
180± 8 | 33 ±0.6
33 ±1.4 | | Iwaide-machi, MIYAGI | 0~5 | 88± 5.8 | 3.4±0.22 | 130± 7 | 4.8±0.25 | | " | 5~20 | 49± 4.7 | 6 ±0.58 | 47± 4.2 | 5.8±0.52 | | Yokohama, KANAGAWA | 0~5 | 180± 9 | 8 ±0.4 | 410±12 | 18 ±0.5 | | | 5~20 | 280±10 | 47 ±1.8 | 650±14 | 110 ±2 | | Fukui, FUKUI | 0~5 | 46± 4.5 | 2.1±0.21 | 110± 6 | 5.1±0.3 | | " | 5~20 | 26± 3.9 | 4.2±0.64 | 30± 4.2 | 4.8±0.68 | | Wakayama, WAKAYAMA | 0~5 | 51± 4.3 | 1.7±0.14 | 200± 8 | 6.8±0.27 | | " | 5~20 | 74± 5.1 | 7.9±0.54 | 210± 8 | 22 ±0.9 | | Hagi, YAMAGUCHI | 0~5 | 190± 8 | 11 ±0.4 | 220± 8 | 12 ±0.5 | | " | 5~20 | 100± 6 | 27 ±1.6 | 69± 5 | 18 ±1.3 | | Matsuyama, EHIME | 0~5 | 26± 3.6 | 1.3±0.18 | 650±14 | 33 ±0.7 | | " | 5~20 | 5± 2.7 | 0.7±0.39 | 39± 4 | 5.7±0.58 | | Saga, SAGA | 0~5 | 13± 3.1 | 0.7±0.17 | 34± 3.7 | 1.9±0.21 | | " | 5~20 | 13± 3.2 | 2.2±0.56 | 27± 3.4 | 4.7±0.61 | | Naha, OKINAWA | 0~5 | 72± 5.2 | 3.9±0.28 | 240± 9 | 13 ±0.5 | | | 5~20 | 73± 5.1 | 14 ±1.0 | 120± 6 | 20 ±1.2 | | December, 1984
Fukushima, FUKUSHIMA
" | 0~5
5~20 | 320±10
130± 6 | 4.6±0.14
4.6±0.22 | 2100±20
660±13 | 30 ±0.3
23 ±0.5 | # (6) Strontium-90 and Cesium-137 in Sea water (from Jul. 1984 to Sep. 1984) —continued from No. 66 of this publication— Table (6): Strontium-90 and Cesium-137 in Sea water | Location | Sample volume analyzed(ℓ) | Cl
(0/00) | ⁹⁰ Sr
(pCi/ℓ) | ¹³⁷ Cs
(pCi/ <i>l</i>) | |-----------------------------|----------------------------------|--------------|-----------------------------|---------------------------------------| | July, 1984 | | , | | | | Odawa-bay, KANAGAWA | 40 | 16.1 | 0.08 ± 0.010 | 0.1 ± 0.011 | | Off-Niigata-port, NIIGATA | 41.7 | 18.57 | 0.11 ± 0.012 | 0.1 ± 0.011 | | Ise-bay, AICHI | 40 | 10.6 | 0.1 ± 0.010 | 0.08 ± 0.011 | | Moji-port, FUKUOKA | 40 | 18.28 | 0.1 ± 0.011 | 0.12 ± 0.011 | | Off-Kaseda, KAGOSHIMA | 40 | 14.12 | 0.08±0.010 | 0.09±0.010 | | Aogust, 1984 | | | | | | Off-Tomari, HOKKAIDO | 40 | 18.25 | 0.09 ± 0.011 | 0.14 ± 0.012 | | Mutsu-bay, AOMORI | 40 | 18.03 | 0.07 ± 0.010 | 0.11 ± 0.011 | | Off-Matsukawaura, FUKUSHIMA | 43.2 | 17.78 | 0.09 ± 0.011 | 0.12 ± 0.012 | | Yamaguchi-bay, YAMAGUCHI | 40 | 20.1 | 0.09 ± 0.010 | 0.14 ± 0.012 | | Kinnakagusuku-bay, OKINAWA | 40 | 13.6 | 0.08±0.009 | 0.09±0.010 | | September, 1984 | | | | | | Off-Osaka-port, OSAKA | 40 | 11.63 | 0.11 ± 0.011 | 0.08 ± 0.01 | # (7) Strontium-90 and Cesium-137 in Sea sediments (from May. 1984 to Sep. 1984) -continued from No. 66 of this publication- Table (7): Strontium-90 and Cesium-137 in Sea sediments | Location | depth
(m) | ⁹⁰ Sr
(pCi/kg) | ¹³⁷ Cs
(pCi/kg) | |-----------------------------|--------------|------------------------------|-------------------------------| | May, 1984 | | | | | Mutsu-bay, AOMORI | 10 | 0±2.7 | 9±3.5 | | July, 1984 | | | | | Off-Tokai, IBARAGI | 7 | 0±2.3 | 12±3.4 | | Odawa-bay, KANAGAWA | 7 | 0±2.4 | 82±5.6 | | Off-Niigata-port, NIIGATA | 52 | 9±2.9 | 250±9 | | Ise-bay, AICHI | 18 | 1±2.5 | 72±5.1 | | Moji-port, FUKUOKA | 10 | 3±2.7 | 78±5.5 | | Off-Kaseda, KAGOSHIMA | 14.5 | 4±2.8 | 10±3.4 | | August, 1984 | | | | | Off-Tomari, HOKKAIDO | 7 | 1±2.4 | 25±4.0 | | Matsu-bay, AOMORI | 13 | 14 ± 3.2 | 200±8 | | Off-Matsukawaura, FUKUSHIMA | 5 | 0±2.4 | 12±3.3 | | Yamaguchi-bay, YAMAGUCHI | 10 | 0±2.7 | 120±6 | | Kinnakagusuku-bay, OKINAWA | 14.4 | 6±3.1 | 18±3.7 | | September, 1984 | | | | | Osaka-port, OSAKA | 11.5 | 5±3.3 | 150±7 |