RADIOACTIVITY SURVEY DATA in Japan

NUMBER 14 FEB. 1967

National Institute of Radiological Sciences Chiba, Japan

Radioactivity Survey Data

in Japan

Number 14

Feb. 1967

Contents

DATA OF ROUTINE SURVEY

Page

Meteorological Data

Monthly and Cumulative Deposits of Strontium-90 and Cesium-137 (Meteorological Research Institute) 1

Water Data

	Dietary Data
Strontium-90	and Cesium-137 in Rice
(National	Institute of Agricultural Sciences

Page

Human Data

Cesium-137 Content in Human Body (National Institute of Radiological Sciences)... 8

DATA OF THE FIFTH NUCLEAR TEST OF THE PEOPLE'S REPUBLIC OF CHINA

Meteorological Data

Gross Deta-radioactivity and Kadioactivity	
of Iodine in Rain and Dust	
(Meteorological Agency)	
(Meteorological Research Institute)	15
(National Institute of Radiological Sciences).	··15
Gross Beta-activity in Upper Air	
(Research and Development H.Q., Japan	
Defense Agency)	·16

Highly Radioactive Fallout Particles (National Institute of Radiological Sciences)…18 (Meteorological Research Institute) ……………21 Radiochemical Separation of Radioactive Fallout (National Institute of Radiological Sciences)…21

Dietary Data

Radioactive Iodine in Milk (National Institute of Radiological Sciences, National Institute of Animal Industry)23

National Institute of Radiological Sciences

DATA OF ROUTINE SURVEY

Meteorological Data

Monthly and Cumulative Deposits of Strontium-90 and Cesium-137

Part 1 (Meteorological Research Institute, Tokyo)

Since 1954, rain and fallout dust have been collected monthly, in a receiver (collection area, $1 m^2$), at the Meteorological Reseach Institute, Tokyo, to determine the content of Strontinm-90 and Cesium-137. Other samples collected monthly (receiver collection area, 0.5 m²) at six stations located throughout Japan, have also been analyzed.

Locations of the stations are shown in Figure 1.

The results of observation during the period from January to December, 1966 are shown in Table 1.

Total cumulative deposits of Strontium-90 and Cesium-137 reached the levels of 80.3 and 182.2 mCi/km² respectively, at the end of December 1966.

Table 1. Monthly Deposits of ⁹⁰Sr and ¹³⁷Cs-Jan. to Dec., 1966-By Y. Miyake, K. Saruhashi, Y. Katsuragi and T. Kanazawa (Meteorolgical Research Institute, Tokyo)

(Continud from Table 1, Issue No. 9~10 of this Publication)

Sapporo (Sappor Locatio	o District n : 43º03′	Central N, 141º2	Meteorolo 0′ E (16.	ogical Ob .9m)	servatory	7)						
	1966 Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
⁹⁰ Sr (mCi/km ²) Precipitation(mm)	0.49	0.37 74.0	0.25 143.0	0, 39 75, 8	0. 14	0. 17 96. 3	0, 15 58, 2	0,05	0.07	0.06	0.13	

Figure 1. Seven Stations collected Sample

Location	: 39°4 3	' N, 14 0	906' E (9).1 m)								
	1966 Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
⁹⁰ Sr (mCi/km ²)	1.05	0.83	0. 53	0.25	0.23	0.31	0.27	0. 14	0. 10	0.09	0.29	
Precipitation (mm)	169.8	118.0	143.5	95.6	103.6	153. 2	380.5	139.6	143.7	238.0	262.7	
Sendai (Sendai D	listrict C	entral M	leteorolog	ical Obse	ervatory)							
Location	: 38°16	' N, 140	°54′ F (3	8.4 m)	, (dtor)							
	1966 Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
90Sr (mCi/km ²)	0.08	0. 18	0. 17	0.31	0.24	0.38	0. 14	0. 10	0.07	0.06	0.03	
Precipitation (mm)	31.3	78.5	141.1	118.6	113.6	252.6	132.3	50 . 2	311.2	85.6	16.4	
Tokyo (Meteorole Location	ogical Re : 35°42	esearch I ′ N, 139	nstitute) °39′ E				<u>_</u> _	<u> </u>				
	1966 Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
⁹⁰ Sr (mCi/km ²)	0.08	0. 18	0.23	0.27	0.35	0.36	0. 10	0.06	0.06	0.04	0.03	0.02
¹³⁷ Cs (mCi/km ²)	0.20	0.54	0.59	1.11	1.10	0.27	0.19	0.13	0.09	0.09	0.05	
¹³⁷ Cs/ ⁹⁰ Sr	2.5	3.0	2.6	2.2	3.2	3.1	2.7	3.2	2.2	2.2	3.0	2.5
Precipitation (mm)	46.5	140.5	110.7	138.0	210.9	551.7	166.1	100.0	195.2	98.3	28.2	10.2
Tokyo (Tokyo D Location	istrict Co : 35°41	entral M N, 139	eteorolog °46' E (4	ical Obse .1m)	rvatory)						·	
	1966 Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
⁹⁰ Sr (mCi/km ²)	0, 10	0. 19	0.28	0.25	0.32	0.38	0. 13	0.04	0.06	0.05	0, 05	
Precipitation (mm)	23.6	122.0	99. 9	133.7	196.2	510 . 2	160.8	54.5	197.1	108.5	29.0	
Osaka (Osaka Dis Location	strict Ce : 34°39'	ntral Me ' N 135%	teorologie 32' E (6.	cal Obsev 7 m)	vatory)						<u> </u>	_
	1966 Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
90Sr (mCi/km ²)	0. 19	0. 19	0.20	0.27	0.40	0.03	0. 12	0. 10	0.04	0.05	0.04	····
Precipitation (mm)	55. 1	96.8	145.0	106.9	170. 5	186.8	274.0	132.0	217.3	67.4	54.3	
Fukuoka (Fukuol Location	a Distric : 35°35′	ct Centra N, 130°	al Meteor 223' E (2	ological (.1 m)	Obesrvate	ory)						
	1966 Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
90Sr (mCi/km²)	0, 15	0, 18	0, 30	0, 22	0, 25	0,28	0.10	0.08	0.04	0.09	0.06	, ,,
Precipitation (mm)	34. 1	53. 1	133.0	106.9	101.4	214.8	119.9	52.6	342.0	110.2	123.6	

Akita (Akita District Meteorological Observatory)

		1966 Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
90Sr	(mCi/km²)	0.03	0.23	0.43	0.34	0.24	0.46	0.11	0.07	0.04	0.07	0.06	
Precipit	tation (mm)	27.2	137.8	138.9	122.7	178.3	310.0	104.2	25.7	167.5	96.3	42.8	

Mito (Mito District Meteorological Observatory)

Location : 36°23' N, 140°28' E (29.2 m)

Water Data

Strontium-90 and Cesium-137 in Source Water

(Japan Analytical Chemistry Research Institute)

Since May 1963, the Japan Analytical Chemistry Research Institute has analyzed the Strontium-90 and Cesium-137 contents in source water from 21 locations in Japan. Sampling locations are shown in Figure 2. The analytical procedure applied is the same one with that shown on page 9, Issue No. 6 of this publication.

Results obtained during the period September 1965 to March 1966 are shown in Table 2.

Figure 2. Source Water Sampling Locations

(3)

Table 2. ⁹⁰Sr and ¹³⁷Cs in Source Water —Sept., 1965 to Mar., 1966—

By T. Asari, M. Chiba and Kuroda

(Japan Analytical Chemistry Research Institute)

(Continued from Table 9, Issue, No. 8, of this Publication)

Teestien	Source	90Sr	¹³⁷ Cs	Natu	are of Water
Location	Source	(pCi/l)	(pCi/ <i>l</i>)	pH	Appearance
Sept. 1965					
Sapporo, HOKKAIDO	Water Purification works	0.53	0.19	7.2	slight muddy
Oct. 1965					
Aomori, AOMORI	<i>II II</i>	0.46	0.11	7.0	clear
Akita, AKITA	<i>II II</i>	0.64	0.11 0.17	6.9 67	// slight muddy
Sendal, MITAGI Mito IBARAGI		0.29	0.42	6.9	slight muddy
Urawa, SAITAMA	11 11	0.05	0.90	7.4	clear
Odawara, KANAGAWA	Intake	0.35	0.02	6.8	"
Kanazawa, ISHIKAWA	" Water Burifaction monks	0.75	0.41	9.1	"
Shimizu SHIZUOKA	Reservoir	0.10	0.03	7.2	11
Nagoya, AICHI	Intake	0.18	0.02	7.0	"
Kyoto, KYOTO	"	1.01	0.07	7.61	"
Kobe, HYOGO	Reservoir	0.18	0.03	7.0	slight muddy
Tottori, TOTTORI Okayama OKAYAMA	"	0.02	0.07	0.7 7.0	clear "
Hiroshima, HIROSHIMA	" "	0.25	0.02	7.05	"
Kochi, KOCHI	Intake	0.23	0.83	7.2	"
Fukuoka, FUKUOKA	Reservoir	0.20	0.05	6.7	"
Nagasaki, NAGASAKI	11	0.37	0.13	7.4	slight muddy
Kagoshima, KAGOSHIMA	"	0.04	0.02	0.8	clear
Nov. 1965		0.01	0.00	71	
Sapporo, HUKKAIDO	water Purification works	0.31	0.06	1.1	11
Dec. 1965		0.04	0.10	c 7	t .
Akita, AKITA	Water Purification works	0.34	0.10	6.7 6.8	clear
Nagova, AICHI	Intake //	0.10	0.02	7.1	"
Kanazawa, ISHIKA	11	0.59	0.16	7.3	"
Wakayama, WAKAYAMA	Water Purification works	0.15	0.05	6.9	slight muddy
Kyoto, KYOTO	Intake	0.95	0.04	7.82	clear
Jan. 1966					
Sapporo, HOKKAIDO	Water Purification works	0.29	0.06	7.1	"
Aomori, AUMORI Sendaj MIVAGI	Keservoir Water Purification works	0.15	0.14	6.8	17 11
Fukui, FUKUI		0.11	0.04	7.25	slight muddy
Shimizu, SHIZUOKA	Reservoir	0.07	0.01	7.4	clear
Wakayama, WAKAYAMA	Water Purification works	0.15	0.02	6.9	slight muddy
Tottori, TOTTORI	Reservoir	0.31	0.21	6.7	clear
Hiroshima, UKATAMA HIROSHIMA	" Intake	0.23	0.04	6.9	17 17
Kochi, KOCHI	11	0.14	0. 02	7.2	11
Nagasaki, NAGASAKI	Reservoir	0.27	0.14	7.1	slight muddy
Kagoshima, KAGOSHIMA	"	0.02	0.02	b.7	ciear
Гер. 1900 Авіна Акіта	Weten Durife the I	0.40	0.11	6 7	
AKITA, AKITA Mito IBARAGI	water Purincation works	0.46	0.11	0.7 7.0	" slight muddy
Urawa, SAITAMA	<i>n n</i>	0.04	0.02	7.4	clear
Odawara, KANAGAWA	Intake	0.08	0.02	6.6	<i>II</i>
Nagoya, AICHI	11	0.18	0.06	6.9	slight muddy
Kyoto, KYOTO Kobe, HYOGO	" Reservoir	0.98 0.44	0.05 0.09	7.05 7.0	clear ″
Mar. 1966			0.00		••
Sapporo HOKKAIDO	Water Purification works	0.39	0.08	71	slight muddy
Futuota FUKUOKA		0.25	0.06	6.8	clear

Dietary Data

Strontium-90 and Cesium-137 in Rice

(National Institute of Agricultural Sciences, Institute of Public Health)

Strontium-90 content in rice has been determined at the National Institute of Agricultural Sciences since 1957, and Cesium-137 content in rice since 1961 in co-operation with the Institute of Public Health.

All rice samples are collected at, and sent from national and prefectural agricultural experimental stations, covering all important agricultural areas throughout Japan. Sampling location are shown in Figure 3.

The samples are chosen as representative of agricultural conditions, including soil type, crop variety, fertilizer application and harvest time.

The analytical procedure applied is the same one with that shown on page 14, Issue No. 3 of this publication.

Results obtained are shown in Table 3 and 4. The annual average of Strontium-90 and Cesium-137 contents during the period 1957 to 1965 is shown in Figure 4.

140°E Sapport 1 11 Tsu Morioka 12 Osaka 2 3 Akita 13 Okavami Sendai 14 Tottori 5 Mito 15 Tsukushing 6 Konosu 7 Tachikawa 8 Kofu 9 Takada 10 Kanazawa 130 35 00 100 200ks 9

Table 3. ⁹⁰Sr in Rice —1965— By H. Kobayashi and M. Ishikawa (National Institute of Agricultural Sciences)

• .•		⁹⁰ Sr (pCi/kg)
Location	Month Harvested	Brown Rice	Polished Rice
Sapporo, HOKKAIDO	Oct	18	1,9
Morioka, IWATE	11	16	0.9
Akita, AKITA	Sept	18	3.1
Sendai, MIYAGI	"	19	2.6
Mito, IBARAGI	Oct	23	2.3
Konosu, SAITAMA	11	18	2.7
Tachikawa, TOKYO	"	12	1.7
Kofu, YAMANASHI	"	15	2.2
Takada, NIIGATA	11	23	3.2
Kanazawa, ISHIKAWA	Sept	21	3.5
Tsu. MIE	Oct	10	1.2
Osaka, OSAKA	Nov	7	2.2
Okayama, OKAYAMA	"	7	1.3
Tottori, TOTTORI	Oct	20	3.3
Tsukushino, FUKUOKA	Nov	16	2.2
Average	for year	16	2.3

(Continued from Table 1, Issue No. 8, of this publication)

Figure 3. Rice Sampling Locations

Table 4.	¹³⁷ Cs in Rice —1965—					
	By H. Kobayashi and A. Tsumura					
	(National Institute of Agricultural Sciences)					
	N. Yamagata					
(Institute of Public Health)						
(Continued from Table 2, Issue No.	8, of this publication)					

		¹³⁷ Cs (pCi/kg)
Location	Month Harvested	Polished Rice
Sapporo, HOKKAIDO Morioka, IWATE Akita, AKITA Sendai, MIYAGI Mita, IBADAGI	Oct " Sept " Oct	116 74 90 61 80
Konosu, SAITAMA Tachikawa, TOKYO Kofu, YAMANASHI Takada, NIIGATA Kanazawa,ISHIKAWA	" " " Sept	78 37 36 59 52
Tsu, MIE Osaka, OSAKA Okayama, OKAYAMA Tottori, TOTTORI Tsukushino, FUKUOKA	Oct Nov " Oct Nov	37 24 93 69 27
Average for year	r	62

Figure 4. Temporal Variation of ⁹⁰Sr and ¹³⁷Cs in Rice —1957 to 1965— —All Japan Mean Values—

Strontium-90 in Wheat

(National Institute of Agricultural Sciences)

Since 1957, Strontium-90 content in wheat has been determined at the National Institute of Agricultural Sciences. All wheat samples are collected at, and sent from national and prefectural agricultural experimental stations, covering all important areas of agriculture throughout Japan.

Sampling locations are shown in Figure 5. The samples are chosen as representative of agricultural conditions, inculding soil type, crop

variety, fertilizer application and harvest time. The analytical method applied is the same one with that shown on page 15, Issue No. 6 of this publication.

Results obtained in 1966 are shown in Table 5.

The yearly average of Strontium-90 content during the period 1957 to 1966 is shown in Figure 6.

Table 5. ⁹⁰Sr in Wheat —1966— By H. Kobayashi and M. Ishikawa (*National Institute of Agricultural Sciences*) (Continued from Table 3, Issue No. 8, of this publication)

Location	Month Homoutod	90Sr (pCi/kg
Location	month narvested	Wheat Grain
Sapporo, HOKKAIDO	1966 Aug	26
Akita, AKITA	Jul	152
Iwanuma, MIYAGI	Jun	75
Nagaoka, NIIGATA	"	74
Mito, IBARAGI	11	91
Tachikawa, TOKYO	"	53
Kofu, YAMANASHI	"	40
Osaka, OSAKA	"	37
Okayama, OKAYAMA	"	38
Amagi, FUKUOKA	"	50
Average for ye	ear	64

Human Data

Cesium-137 Content in Human Body

(National Institute of Radiological Sciences)

Content of Cesium-137 in human body has been observed by the National Institute of Radiological Sciences since November 1963. During the period from August 1965 to March 1967, 177 male subjects were tested using a plastic scintillation whole body counter at the National Institute of Radiological Sciences. The detail of method for determination is the same one with that shown on page 22, Issue No. 7 of this publication. A slightly decreasing trend to quarterly content of Cesium-137 in human body was found The monthly results and the in this term. quarterly variation are shown in Table 6 and 7, respectively.

Table 6.	Cesium-137 in man expressed in mpCi and							
	pCi per gram of potassium							
	—Aug. 1965 to Mar. 1967—							

By M. Saiki, T. Iinuma and M. Uchiyama (National Institute of Radiological Sciences)

(Continued fr	om Table	14,	Issue No.	7.of	this	publication]
---------------	----------	-----	-----------	------	------	--------------

Name Age		Height (cm)	Weight (kg)	Body- burden (mµCi)	pCi of ¹³⁷ Cs per gram of K
Aug.	1965				
Y.K.	23	173.2	58.5	10.0	72
N. N.	23	180.5	86.5	9.4	60
Т.Н.	25	168.5	54.0	3.3	27
J. I.	25	170.0	59 <i>.</i> 5	2.8	22
Ř. K.	26	168.6	61.0	8.7	62

M. U.	27	174.4	49.0	7.0	60	Τ.Ι.	3	1	163.2	50.5	6.7	49	
T.I.	27	171.5	58.5	7.5	64	S. O.	3	4	158.1	58.5	10.6	87	
Y.K.	29 29	163.1	46.5	4.9	89 35	5. Y.	3	6	164.0	51.0	10.6	92	
Τ.Κ.	30	176.6	66.5	12.4	92		er or p	ersons	measured :	10	av. 8.7	av. 61	
K.W. MY	30 31	167.2 162.3	57.0 52.5	9.3 7.5	77 57	Dec.	1965						
T. I.	31	163.2	49.5	6.4	54	Y.K.	2	3	173.5	60.5	8.2	52	
K. I. S. O.	33 34	163.2 158.1	60.0 59.0	12.3 13.2	100	T.H.	2	ა 5	167.6	84. 5 53. 5	7.2 5.6	40 45	
s v	36	164 7	50.5	6.0	53	J.I. KK	2	6	170.3	60.0	5.4	42	
T.U.	37 37	157.0	49.0	5.1	48	M U	2	0 7	109.4	02.0 52.5	7.0	91 19	
Number o	f persons	s measured :	17	av. 7.8	av. 64	Z.M.	2	9	162.2	52.5 47.5	5.0 4.9	40	
Sont 106	5					– Y.K. Y.O.	3	0	174.5 162.6	60.0 69.0	$\begin{array}{c} 6.4\\ 10.2 \end{array}$	47 79	
V K	93 93	173 5	57 5	Q 1	65	Τ.Κ.	3	1	176.8	68.0	13.3	87	
N.N.	23	180.7	85.0	8.1	51	K.W.	3	1	167.1	59.0	7.8	56	
Т.Н. Т.Т	25 25	167.2 170.1	54.5 60.0	7.1	56 17	T. I.	3	1	163.1	50.5	6.9	58	
K. K.	$\frac{26}{26}$	168.6	62.0	8.0	56	K.I.	3	3	162.3	61.0	8.1	49	
M. U.	27	174.2	50.0	5.6	48	5.0. S V	2 2	6	165 0	50.5	0 5	104	
1.1. Z.M.	27 29	171.5 162.3	58.0 46.5	10, 4 6, 2	86 71	T.U.	3	7	157.2	49.5	7.1	62	
Y.K.	30	174.6	61.5	8.2	60	Numb	er of P	ersons	measured :	17	av. 7.8	av. 54	
т. К.	31 31	102.0	00.0 66.6	11.1 19.6	90 90	Jan.	1966						
K.W.	30	166.5	57.5	10.7	90	Y.K.	2	3	173.8	61.5	11.1	73	
М. Ү. Т. І.	31 31	162.3 163.4	54.0 50.5	7.5 79	58 59	N.N.	2	3	181.0	85.5	9.5	73	
ĸ.î.	33	162.2	60.0	14. 4	119	г.н. Ј.І.	2	.5 6	170.8	55.5 60.0	$\frac{8.1}{8.2}$	70	
S.C.	34	158.0	59.0	11.5	109	К.К.	2	6	168.9	63.5	9.1	73	
5.Y. T.U.	36 37	164.5 156.8	50.0 49.2	8,5 8,1	73 74	M.U.	2	7	173.9	51.5	5.0	42	
Number of	persons	measured :	18	av. 8.9	a.v 73	Y.K.	· 3	0	174.4	60.5	12. 1 8. 4	123 78	
0.4 1007						- Y.O. T.K.	3 3	1	162.5 177.2	$70.0 \\ 67.0$	7.8 14.4	$\begin{array}{c} 62\\117\end{array}$	
UCT. 1965 Y K	23	173-2	60.0	a 0	61	K.W.	3	1	167.1	57.0	12.4	103	
N.N.	23	181.6	85.0	8.1	49	М. Ү. Т Т	3	1	162.2 163.2	55.0 50.0	11.2	98 98	
Т.Н. І І	$\frac{25}{25}$	168.3 170.0	54.0	5.7	45 51	K.I.	3	3	162.7	62.5	12.4	90 97	
K.K.	26	168.9	61.5	11.6	80	S.O.	3	4	157.9	59.0	8.8	74	
M. U.	27	174.3	50.0	6.9	59	S.Y. T.U	. 3	6 7	163.0 157.0	52.0 50.5	7.8 7.5	62 65	
1.1. Z.M.	27 29	171.5 162.8	$59.0 \\ 47.0$	10, 5 6, 9	87 79	Numb	er of p	ersons	measured :	17	av. 9.6	av. 81	
Y.K. V.O	30 31	174.6	61.5	7.1	52		1000			<u>,</u>			_
1.U. ТК	১। ২1	102. I 176. 5	67 0	9.7	83 60	Feb.	1966	0	170 0	69.0			
K.W.	31	166.9	57.0	9, 0	99 76	Ү.К. N.N.	2	3 3	173.8 181.9	62.0 85.0	8.8 4.8	56 30	
М. Ү. Т. І	31 31	162.6 163.5	52.5	9.8 7.8	75 66	Ţ. H.	2	5	168.4	53.5	3.1	25	
K.I.	33	162.9	60.5	12.6	103	J.I. K.K.	20 20	0 6	170.6	60.5 64.5	2.4 5.0	15 33	
S.O.	34	158.5	58.0	11.5	106	Τ.Ι.	2	8	171.1	58.5	8.3	62	
S.Y. T.U.	36 37	165.0 156.2	50.0 48.0	9.4 8.5	80- 78	Z.M. v K	2	9 0	162.6 175.3	49.0 61.0	4.5	-18 16	
Number of	Dersons	measured .	18	av. 9.1	av. 71	<u>Y</u> .O.	3	1	162.7	70.0	9.2	40	
	Persons	measured .	10	av. 3.1	uv. /+	- T.K.	3	1	176.9	67.0	13.3	91	
Nov. 196)	170 -	00.0	10.1	- /.	К. W. Т. I.	3 3:	1 2	167.7 163.5	59.0 50.0	$4.5 \\ 4.1$	$\frac{36}{34}$	
1.K. N.N.	23 23	173.5 182.2	60.0 83.5	10. 1 6. 9	59 47	S.O.	3	4	157.7	57.5	8.5	77	
Т.Н.	25 25	168.5	52.0	5.6	38	J. I. Numb	ان ست را س	u	104.7	54. 5 14	0.4	16	
ј. і. К. К.	25 26	170, 5 168, 8	60.0 62.0	7.6 8.2	$\frac{50}{51}$	inumb		ersons	measured :	14	av. 0.4	av. 48	
<u>м</u> . U.	27	174.1	50.3	7.8	55	Mar.	1966						
Т. I. Z. М	27 29	171.3	58.3 17-0	11.8	78	Ү.К. тч	2	3	173.5 168.8	61.8 51.0	$\frac{8.3}{7}$	55 57	
Y.K.	30	174.5	61.0	4.8 6.6	40	Г. П. Ј. Г.	2	6	170.3	60, 5	6.1	43	
Y.O. T.V.	31	162.4	69.0	9.9	78	K.K. Z.M	20 20	6 9	169.7 163.0	65.0 49.0	5.8 5.7	41 56	
1. K. K. W.	$\frac{31}{31}$	176.8 166.5	66, 5 58, 5	14.8 9.0	94 59	Y. K.	3	0	173.7	60.5	6.5	- 14	
M. Y.	31	162.3	54.2	8,6	53	Ŷ. Ö.	3	1	162.3	70.5	10.4	77	

Name	Age	Height (cm)	Weight (kg)	Body- burden (mµCi)	pCi of ¹³⁷ Cs per gram of K	Dec. 1966 H.K. T.H. K.K.	25 26 27	157.2 167.3 169.1	51.5 53.5 62.2	7.3 4.0 1.8	60 32 13
<u>т к</u>	21	177 .1	67 5	11.8	83	M.U. T.I.	28 28	173.5 171.7	50.0 57.5	3.7 7.3	35 57
K W	31	167 0	58.5	6.0	50	VC	21	171 0	71.0	0.4	72
M. Y.	32	162.2	55.0	8.8	62	Y.O.	31 32	163.0	72.2	$\frac{9.4}{7.2}$	57
Τ.Ι.	32	163.4	49.0	8.5	72	K.W.	32	157.5	57.0	6.8	57
S. O.	34	157.9	56.2	9.0	84	Τ.Ι.	33	163.3	48.5	5.3	43
Š.Y.	36	164.5	51.5	11.3	87	S.O.	35	157.4	56.0	8.0	79
T.U.	37	157.1	50.0	6.6	58	Н.К.	35	160.7	56.5	7.6	62
Number	of percon	e maneurod	· 14	av 8.0	av 61	S. Y.	37	164.7	49.1	6.8	56
Number	or person			av. 0.0	av. 01	Ť.U.	39	156.9	50.0	4.8	39
Sept.	1966					Number of	person	s measured :	13	av. 6.2	av. 51
H.K.	25	157.0	50.5	4.2	36	· · · · · · · · · · · · · · · · · · ·					
T.H.	25	169.3	53.5	1.4	11	Mar. 196	7				
K.K.	27	168.6	64.5	3.7	25	нк	26	157 8	53 5	4 1	35
M. U.	28	173.8	48.0	1.8	18	п. к. т ч	20	168 2	52 3	1 9	16
Т. І.	28	171.5	58.0	9.2	69	K K	20	169 2	64 5	3.9	27
7 M	30	162 9	50 5	29	31	M II	29	173 9	49 0	2.0	18
\mathbf{V} S	30	170 .1	70.5	89	61	T I	29	171 5	57.0	4.5	39
к к 1.5.	31	158 0	50.5	27	25			101.0			00
Y O	32	162.5	71.0	<u>.</u> .	74	Z.M.	30	163.0	50.5	2.9	33
ĸ w	32	167.5	57.5	6.7	56	<u>K.K.</u>	31	156.7	49.5	2.2	20
	08	107.0				K. W.	32	167.1	57.5	3.8	35
T.K.	32	177.0	69.0	13.4	94	T.K.	32	176.7	70.0	b. /	48
T. I.	33	163.2	49.5	3.4	27	Τ.Ι.	33	163.1	49.0	2.7	25
<u>s.o</u> .	35	157.9	56.5	11.0	105	S. O.	35	158.8	56.0	5.8	54
Н.К.	35	161.1	55.0	3.8	30	Ĥ.K.	35	160.6	54.3	4.5	41
S.Y.	37	164.5	51.0	5.4	44	S.Y.	37	164.7	50.5	3.4	27
T. U.	38	156.8	48.5	2.7	26	Ť.Ū.	38	157.2	50.0	3.1	28
Number	of person	s measured	1: 16	av. 5.6	av. 46	Number of	person	s measured :	14	av. 3.7	av. 32
Number	of person	s measured	1: 16	av. 5.6	av. 46	Number of	person	s measured :	14	av. 3.7	av

Table 7. Average Values of Cesium-137 in Man determined with a Whole Body Counter By M. Saiki, T. Iinuma and M. Uchiyama

		19	65		1966		1967
~~~		Jul. ~Sept.	Oct. ~Dec.	Jan. ~Mar.	Sept.	Dec.	Mar.
Number of persons		51	51	45	16	13	14
Total body burden	Mean	8.7	8.5	8.1	5.6	6.2	3.7
expressed in mµCi	Standard deviation	2.9	2.3	2.8	3.6	2.1	1.4
	Minimum~Maximum	2.8~14.4	4.8~14.8	2.4~14.4	1.4~13.4	1.8~9.4	1.9~6.7
Total body burden	Mean	69	65	65	46	51	32
expressed in pCi of	Standard deviation	24	19	24	28	18	11
¹³⁷ Cs/gk	Minimum~Maximum	22~119	$38 \sim 106$	15~123	$11 \sim 105$	13~79	16~54

(National Institute of Radiological Sciences)

## DATA OF THE FIFTH NUCLEAR TEST OF THE PEOPLE'S REPUBLIC OF CHINA

## **Meteorological Data**

### Gross Beta-radioactivity and Radioactivity of Iodine in Rain and Dust

Part 1 (Meteorological Agency)

Survey of gross beta-activity in precipitation and airborne dusts has been conducted with the network of 13 stations shown in the Figure 7. Processes of sampling and counting are the same ones with that in the explanation on page 2, Issue No. 5 of this publication series.

The results obtined during the period from 26 December, 1966 to 18 January, 1967 are shown in Table 8 and 9. Both airborne radioactivity concentrations and radioactive depositions in these period were recorded as the highest of those ever experienced since the Meteorological Agency undertook to monitor the radioactive fallout.

The fifth nuclear detonation of the People's Republic of China was carried out on 28 December, 1966 according to the news reporting. Judging from meteorological aspects of the radioactive fallout from the detonation over Japan, it is assumed that the time and location of the detonation are respectively at 3.00 a.m. (GMT) on 28 December and  $40^{\circ}$  N,  $90^{\circ}$ E.

The first arrival of the fallout was on 30 December, 1966 and increase of the overall fallout in Japan was the period from 30 December, 1966 to 1 January, 1967. Later, the time of the detonation was supported by an investigation of micro-barographic records and the other scientific information. Transit of the radioactive cloud over Japan can be understood by meteorolgical trajectories drawn in Figure 8 in which showed

#### Figure 7. Fallout Observation Network of Meteorological Agency



the starting time and location of air parcel assumed as described above.

Actual situation of the fallout in airbone dusts near the ground and precipitation, i. e., the first arrival, the highest concentration, and the increase and decrease are shown in the Figure 9. The very early arrival and the higher value of the fallout may be caused by the meteorological condition prevailing in the early winter and the related fall of highly-active fallout particles having the larger size. The second arrival of the fallout in Japan, which passed the course of the around the world was traced in the middle January by drawing the 500 mb and 100 mb trajectories in the northern hemispheric chart.

# Table 8. Gross β-activity in Dust -26 Dec., 1966 to 18 Jan., 1967 Compiled by N. Murayma, H. Fujimoto, M. Kamiyama, H. Shimura and S. Maeshima (Meteorological Agency)

 $(pCi/m^3)$ Dec. 1 Jan. 1967 1 1966 272829 30312 3 4 5 6 Station 0.2 0.2 0.0 0.0Sapporo 0.0 0.0 0.0 0.00.5 Sendai 0.5 0.0 0.20.30.20.1 0.5 Tokyo 0.23.612.02.50.21.1 0.3 0.6 Osaka 0.50.0 22.0 43.02.9 2.40.5 1.43.1 Fukuoka 0.2 0.2 423.0 510.0 16.0 7.0 2.61.7 Jan. 8 9 10 12 13 14 15 16 17 18 11 Station 0.0 0.5 0.2 0.0 Sapporo 0.3 0.4 0.8 Sendai 0.4 1.9 1.20.4 0.6 Tokyo 1.7 0.21.0 1.70.5 Osaka Fukuoka 32.04.6 7.01.0

## Table 9. Gross β-activity in Rain —26 Dec., 1966 to 18 Jan., 1967— Compiled by N. Murayama, H. Fujimoto, M, Kamiyama, H. Shimura and S. Maeshima (Meteorological Agency)

Upper Rank : Concentration (pCi/cc) Lower Rank : Deposition (mCi/km²)

· · · · · · · · · · · · · · · · · · ·	Dec. 1960	3					Jan. 19	67				
Station	26	27	28	29	30	31	1	2	3	4	5	6
Wakkanai "	0.0		0.0 0.0	0.1 0.0	0.1 0.1	0.1 0.2			0.0 0.0	0.6 0.9	0.1 0.8	0.1 0.7
Sapporo "		0.0 0.0	$0.0 \\ 0.0$	0.1 2.0	$0.0 \\ 0.0$				$0.0 \\ 0.0$	$0.0 \\ 0.0$		
Kushiro "								0.4 1.0		0.2 0.2		
Sendai "			$0.0 \\ 0.0$					$\begin{array}{c} 0.6\\ 6.0 \end{array}$	0.4 0.6	$0.1 \\ 0.2$	0.1 0.3	
Akita		0. 1 0. 4	0.0	$0.1 \\ 0.5$	$0.1 \\ 0.5$		58.0 58.0	0.5 9.0	$1.8 \\ 2.5$	1.0 2.8	$0.2 \\ 0.9$	$0.3 \\ 0.3$
Tokyo								1.9 27.0				
Wajima "	$0.0 \\ 0.0$	$0.0 \\ 0.0$	$0.0 \\ 0.0$	$0.0 \\ 0.0$	910.0 5600.0	473.0 1560.0	10.0 88.0	$\begin{array}{c} 0.6\\ 20.0 \end{array}$	9.0 200.0	$\begin{array}{c} 1.5 \\ 44.0 \end{array}$	0.3 5.0	2.3 14.0
Hachijojima ″										٠,		
Osaka "							60.0 190.0	1.4 20.0				
Yonago	0.1	0.1	0, 1	0.1 0.2			406.0 3900.0	11.0 200.0	45.0 230.0	3.4 23.0	16.0 100.0	
Murotomisaki ″							23.0 350.0	0.1 2.0				
Fukuoka			$0.1 \\ 0.2$				10.0 180.0	$1.4 \\ 14.0$		$6.0 \\ 200.0$	$1.9 \\ 2.3$	
Kagoshima ″		0.0 0.0					55.0 770.0	$7.0 \\ 20.0$	40.0 170.0	$\begin{array}{c} 4.0\\ 8.8 \end{array}$		
	Ian 19	37										
Station	7 7	8	9	10	11	12	13	14	15	16	17	18
Wakkanai "	0. 1 0. 2	0.1 2.0	0.1 0.5			1.4 5.5	0.6 1.0	0.7 10.0	0.1 1.0	1.1 4.7		$0.9 \\ 2.0$
Sapporo	$\begin{array}{c} 0.1\\ 1.0 \end{array}$	$0.0 \\ 0.0$	0.0 0.0	$\begin{array}{c} 0.9 \\ 3.0 \end{array}$		0.1 0.6	0.0 0.0	0.0 0.3	$\begin{array}{c} 0.8\\ 2.0 \end{array}$			0, 0 0, 0
Kushiro "						$0.2 \\ 0.7$	0.2 0.3					
Sendai				0.1 0.1							0. <b>1</b> 0. 4	
Akita ″	0.2 0.6	$0.2 \\ 0.9$	2.3 6.7	$0.8 \\ 4.0$		0.4 2.0	0.4 1.0	1.9 19.0	$1.6 \\ 5.3$	2.2 3.3	$1.0 \\ 8.3$	$0.4 \\ 1.0$
Tokyo						1.8						
Wajima	0.9 30.0	0.5 9.0	1, 1 15, 0	2.1 5.5		2.8 43.0	0.1	1.0 10.0	1.0 5.0	0.3 10.0	0.0 0.0	0.4
Hachijojima				010								
Osaka "						0.5 5.0						
Yonago	$1.7 \\ 5.8$	0.3	0.2	1.7 28.0		0.9			$0.3 \\ 3.0$	$\frac{2.2}{17.0}$	0.4	0.6
Murotomisaki ″						0.6			5.0		. • **	
Fukuoka					$\frac{4.1}{42.0}$	16.0 34.0				$7.0 \\ 20.0$		
Kagoshima "	$15.0 \\ 170.0$				3.6 7.2	01.0				1.2 8.4		

.



Figure 8. The Meteorological Trajectory at the Time when the 5th Nuclear Test was carried out by the People's Republic of China

Figure 9. Temporal Variation of Gross  $\beta$ -activity in Rain and Dust near the Ground (Maximum Value : in Japan)



#### Part 2. (Meteorological Research Institute, Tokyo)

The Meteorological Research Institute, Tokyo, measured beta-radioactivity in rain and dry fallout collected in a tray at the institute. Results of measurements obtained during the

period from 24 December, 1966 to 21 January, 1967 when the effect of the 5th Chinese atomic detonation was noticed, are shown in Table 10.

Table 10.	Deposits of Radioactive Fallout -24 Dec., 1966 to 21 Jan., 1967-
	By Y. Miyake, K, Saruhashi, Y. Katsuragi and T. Kanasawa
	(Meteorological Research Institute, Tokyo)

Date of Sampling					Collection time (hr)	Total $\beta$ -activity (mCi/km ² )	Remarks
Dec	. 1966						
9.00 a.m., " " 0.30 p.m., "	24 th to 26 " " 28 " " 29 " " 30 " "	9.00 " 0.30 2.00	a.m., p.m.,	26 th 28 " 29 " 30 " 31st	48 48 27.5 24 25.5	0.03 0.03 0.89 1500 412	Dry fallout " " "
Jar	. 1967						
2.00 p.m., 10.00 a.m., 9.00 " " " " " " " " " " " " " "	Cec. 31st to 2nd " 4th " 5" " 6" " 9" " 10" " 11" " 13" " 14" " 14" " 18" " 19" "	10.00 9.00 "" "" "" "" "" "" "" "" ""	a.m., " " " " " " " " " " " " " " " " " " "	Jan. 2nd 4th 5 " 6 " 7 " 9 " 10 " 12 " 13 " 14 " 16 " 17 " 18 " 19 " 20 "	44 47 24 24 24 24 24 24 24 24 24 24 24 24 24	$\begin{array}{c} 35\\ 22\\ 1,8\\ 5,5\\ 4,6\\ 3,7\\ 0,49\\ 0,54\\ 4,4\\ 0,68\\ 0,16\\ 2,2\\ 0,34\\ 0,10\\ 0,04\\ 0,06\end{array}$	rain (12.9 mm) dry fallout " " " " rain (3.4 mm) dry fallout " " " " "

#### Gross Beta-activity and Radioactivity of Iodine in Rain and Dry fallout

Part 3. (National Institute of Radiological Sciences)

Daily rain and dry fallout samples were continuously (from 9 a.m. to the next 9 a.m.) collected on the roof of the building of National Institute of Radiological Sciences in Chiba City, to determine the gross beta-activity and activity of radio-iodine.

Gross beta-radioactivity was measured using the standard of Uranium oxide  $(U_3O_8)$  with a Geiger-Müller counter.

After the addition of an iodine carrier to the fallout samples, the iodine was chemically separated for radioactivity determination, using an iodine-131 standard with a beta-ray low background counter.

The radioactivities of both samples were measured 6 hours after the time of collection of samples.

Results obtained during the period from 29 December, 1966 to 31 January, 1967 are shown in Table 11.

On 28 December 1966, the nuclear explosion test was carried out by the People's Republic of China. The radioactivity of initial precipitations of the fallout showed the highest values among the results obtained from previous research on the effects of four nuclear explosion tests of the People's Republic of China, while the contribution

rate of iodine on the total activities showed the lowest value among them.

Table 11.	Gross $\beta$ -radioactivity and Radioactivity of Iodine in Rain and Dry Fallout collected	
	in a tray at Chiba City -29 Dec., 1966 to 31 Jan., 1967	
	By M. Saiki, H. Kamada, Y. Ohmomo, T. Koyanagi, K. Kimura, M. Uchiyama	a,

Z. Murakoshi, H. Kawamura, E. Kase, E. Nakano and H. Yamaguchi. (National Institute of Radiological Sciences)

Date of Sampling	D Dete	ate of rmination	Gross β-activity (mCi/km²)	β-activity of Iodine (mCi/km²)	Remarks
29~30 Dec. 196	56 30 D	ec. 1966	14,600,0	74.0	
30~31 <i>"</i>	31	"	453.0	8.5	
$31 \sim 1$ Jan. 196	57 1 Ja	an. 1967	190.0	3.3	
$1 \sim 2$ "	2	1/	137.0	7.0	Rain (19 mm)
2~3 <i>"</i>	3	11	7.0	0.7	Rain $(0.5 \text{ mm})$
$3 \sim 4  ''$	4	11	4.2	0.5	
$4 \sim 5 $ "	5	17	0.3	<0.4	
5~6 "	6	17	0.1		
$6 \sim 7$ "	7	"	0.1		
7∼9 <i>"</i>	9	"	11.0		
9~11 "	11	11	0.8		
$11 \sim 12$ "	12	"	6.3		Snow and Rain (5 mm)
$12 \sim 13$ "	13	11	0.2		()
13~14 "	14	"	0.2		
$14 \sim 16$ "	16	"	0.7		
$16 \sim 17$ "	17	"	0.6		
$17 \sim 18$ "	18	"	0.0		
18~19 <i>"</i>	19	"	0.1		
19~21 "	21	"	0.1		
$21 \sim 23$ "	24	"	0.3		
$23 \sim 24$ "	24	"	0.2		
$24 \sim 25$ "	25	11	0.1		
25~26 <i>"</i>	28	"	0.0		
$26 \sim 28$ "	28	"	0.2		
28~30 <i>"</i>	31	"	1.2		Rain (30 mm)
30~31 "	31	11	$\overline{0.2}$		

#### Gross Beta-activity in Upper Air

(Research and Development H. Q., Japan Defense Agency)

Since 1960, Research and Development H. Q., Japan Defense Agency has measured the betaradioactivity of dust in the lower layer of the stratosphere and tropopause using aircraft as collectors.

The samples were taken over three areas of Japan using gummed paper and dust samplers attached to the front of the aircraft wings.

The sampling flight was made using two aircraft at the same time, one of which made a normal sampling flight and the other only upward and downward flight. The difference between the amounts of radioactivity of the samples collected by the two aircraft is taken as the value at the flight altitude.

But, at this time, the value of sample collec-

ted by the aircraft which made a level sampling flight for an hour was rather lower than one by the upward and downward flight.

It seems that this result was caused by the radioactive airborne dust and fallout particles which were floating unequal at the lower altitude than that of level sampling flight.

On this occasion, the quantitative value was not obtained.

So, the true value obtained is shown in Table 12.

Figure 10 shows three sampling areas of Japan.

Figure 11 and 12 show the temporal variation of gross  $\beta$ -activity in upper air at an altitude of 10 km and 12 km.

#### Table 12. Gross $\beta$ -radioactivity in Upper Air --30 Dec., 1966 to 5 Jan., 1967--By T. Urai and T. Igarashi (Research and Development H.Q., Japan Defense Agency)

 $(pCi/m^2)$ 

	Sky Area	Tohoku,	Hokkaido	Ch	ubu	Ky	ushu
Date		12, 000 m	10, 000 m	12, 000 m	10, 000 m	12, 000 m	10, 000 m
Dec.	30, 1966	0.81			9693.0	* (5311.45 8546.86	
"	31		46.6		51.1		4014.0
Jan.	1, 1967	2.1					
"	2				4.1		76.0
"	3		5.9			593.0	
"	4	25.8			0.47		* [258.4
"	5		31.8		1.4	51.9	[1059.2

* Upper rank : the value of level sampling flight (pCi/1 gummed paper)

Lower rank : the value of upward and downward sampling flight (pCi/1 gummed paper)



#### Figure 10. Three Sampling Areas of Japan



#### **Highly Radioactive Fallout Particles**

Part 1. (National Institute of Radiological Sciences)

The monitoring of highly radioactive fallout particles has been performed on the roof of building of National Institute of Radiological Sciences in Chiba City, using a gamma-ray scintillation counter synchronized with recorder.

A NaI (Tl) scintillator  $(2 \text{ in. } \phi \times 1.5 \text{ in.})$  was used as a detector, the out put of which was fed to the single channel pulse height analyser. And a receptacle on the detector for collection of highly radioactive fallout particles was 20 cm in diameter and 30 cm in depth. Background of the detector was in 9,000 cpm.

At 10.15 a.m. on 30 December 1966, radioac-

tivity of the fallout measured by the detector was 75,000 cpm as shown in Figure 13, and by the recorder, it was clearly observed that they had fallen during 5.15 a.m. to 10.15 a.m.

Highly radioactive particles showing 4.5 to  $74 \text{ m}_{\mu}\text{Ci}$  were counted up to 176 over  $1 \text{ m}^2$ , and those particles were easily detected with a Geiger-Müller survey meter of end window type.

Daily sampling of the particles was continued by using vinyl sheet collector, about 1 m², prepared on the roof of building of the Institute. Results obtained are indicated in Table 13.

The particles were analyzed by scintillation

gamma-ray spectroscopic method. The changes in gamma spectrum as a result of decay are shown in Figure 14.

The particles were proved to contain a great deal of Neptunium-239 followed by Molybdenum-99+Technetium-99 m, Cerium-143, Zirconium-97 +Niobium-97 m+Niobium-97 and Barium-140+ Lanthanum-140.

After radioactive nuclides as mentioned above has decayed, the main radioactivity on 7 February 1967 seems to be originated from Cerium-141, Zirconium-95+Niobium-95, Barium-140+Lanthanum-140, Ruthenium-103 and Neodynium-147.

From the results of analyses, these highly radioactive fallout particles were considered to be originated from the debris of the 5th nuclear explosion test by the People's Republic of China which was carried out on 28 December 1966.





Table 13. Survey of Highly Radioactive Fallout Particles
 By M. Saiki, T. Koyanagi, K. Kimura, Z. Murakoshi
 and H. Kawamura
 (National Institute of Radiological Sciences)

									Fall Rate	Radioactivi	Radioactivity of a Particle $(m\mu Ci)$			
	Date	of	Sampling						(number of particle/m ² )	Maximum	Minimum	Mean		
<u> </u>			~11	. 00	a.m.,	30	Dec.,	1966	176	74.0	4.5	23.0		
4.00 p.m.	, 30 D	ec.,	1966~	"		31	"		51	27.0	2.7	9.7		
2.00 p.m.	, 31	"	~10	. 00	a.m.,	1	Jan.,	1967	31	7.7	0.9	4.0		
10.00 a.m.	, 2 Ja	an.,	1967~	11		3	"		28	7.2	0.5	3.4		
"	3	"	~	"		4	"		20	4.1	0.7	1.7		
"	4	"	$\sim 12$	. 00	p.m.,	5	"		20	3.2	0.6	1.7		



Figure 14. Gamma-ray Spectrum of Highly Radioactive Fallout Particle By M. Saiki, H. Kamada and K. Kimura

The Meteorological Research Institute carried out radiochemical analysis of fallout particles collected on 13 January, 1967 when the effect of the 5th Chinese atomic detonation was detected.

Results obtained are indicated in Table 14.

Table 14.	Radiochemical Analysis of Highly Radioactive
	Fallout Particles —13 Jan., 1967
	By Y. Miyake, K. Saruhashi, Y. Katsuragi,
	T. Kanazawa and Y. Sugimura
	(Meteorological Research Institute, Tokyo)
	(Percentage in Activity)

Nuclides	(Percentage in Activity) Fission and induced product
²³⁹ Np	6.4
237U	6.5
⁹⁹ Mo, ¹³² Te ¹⁰³ Ru, ¹⁰⁶ Ru }	6.7
⁹⁵ Zr, ⁹⁵ Nb	6.8
⁸⁹ Sr, ⁹⁰ Sr, }	13.2
The rare-earth elements	60.4

#### **Radiochemical Separation of Radioactive Fallout**

(National Institute of Radiological Sciences)

A sample of radioactive fallout was collected for radiochemical separation during 9.00 a.m., 29 December, 1966 to 9.00 a.m., 5 January, 1967, using a stainless steel pot, 47 cm in diameter, 49 cm in depth.

After the sample was dried up, it was heated and layed in ashes, then fused with sodium carbonate and potassium carbonate, (the ratio is 1 to 1), by heating in a platinum crucible. The fused sample was radiochemically determined for radioactive nuclides after separation by barium sulfate, (Claude W. Sill and Conrad P. Willis, Anal, Chem. Vol. 38, No. 1, p.  $97 \sim 102$ , 1966).

The separated nuclides was qualified by betaray spectrum, gamma-ray spectrum and decay on a each radioactive nuclide.

The measured beta-ray spectra using a low back ground beta-ray spectrometer are shown in Figure 15.

Curve I, the spectrum 10 days after collection obtained on sample which collected during 9.00 a.m., 29 to 9.00 a.m., 30 December, 1966, shows the presence of a great deal of Barium-140+Lanthanum-140 emitting  $1.0 \sim 1.6$  Mev. of main maximum beta-ray and 2.2 Mev. of maximum one, and Curve II, 14 days after collection, shows the result of decay. Curve II, the spectrum on 13 January 1967 of Cerium, Barium, Lanthanum and Strontium fraction separated from sample which collected during 9.00 a.m., 29 December, 1966 to 9.00 a.m., 5 January 1967, shows the presence of Barium-140+Lanthanum-140. Curve N, the spectrum on the same day of Neptunium fraction separated from the same sample, shows the presence of Neptunium-239 emitting  $0.33\sim0.38$ Mev. of main maximum beta-ray and 0.72 Mev. of maximum one.

Gamma-ray spectra of the Cerium, Barium, Lanthanum and Strontium fraction, Zirconium and Strontium fraction and Neptunium fraction, which were measured using the 400 channel gamma-ray pulse height analyser on 12 January, 1967 are shown in comparison to the original sample in Figure 16.

In Curve 1, the spectrum of original sample, all peaks shown are identifiable with the nuclides indicated. Curve 2, spectrum of Cerium, Barium and Lanthanum fraction, shows photo-peaks originated from Cerium-141, -143 and Barium-140+ Lanthanum-140. A photo-peak in Curve 3, spectrum of Zirconium fraction, is attributable to Zirconium-95+Niobium-95. In Curve 4, the spectrum of Neptunium fraction, all photo-peaks shown are attributable to Neptunium-239.

nuclides by beta-ray counting with Geiger Müller counter, are indicated in Table 15.

The results obtaind, composition of radio-





Figure 16. Gamma-ray Spectra of Radioactive Fallout and its Separated Samples By M. Saiki, H. Kamada and T. Koyanagi (National Institute of Radiological Sciences)

Table 15. Radioactivity Composition in Total Beta-activity —12 Jan., 1967— By M. Saiki and H. Kamada (National Institute of Radiological Sciences)

Days after Nuclear Test	Radionuclides	Beta-ray Radioactivity (%)
	²³⁹ Np	16
15	¹⁴⁰ Ba+ ¹⁴⁰ La ¹⁴¹ Ce ¹⁴³ Ce ⁸⁹ Sr	39
15	⁹⁵ Zr + ⁹⁵ Nb ⁸⁹ Sr	19
	¹⁰³ Ru ¹⁹¹ I and others	26

#### **Radioactive Iodine in Milk**

(National Institute of Radiological Sciences and National Institute of Animal Industry)

Concentrations of radioactive iodine in milk were determined by National Institute of Radiological Sciences during the period from 30 December, 1966 to 26 January, 1967.

Milk samples were market milk and raw milk, which were taken from a farm and a milk collecting center located in the northern part of Chiba prefecture and the other samples were collected from farms in Kumamoto and Sapporo. Sampling locations are indicated in Figure 17.

Iodine was chemically separated and measured by using an Iodine-131 standard with a betaray low back ground counter.

Results obtained are shown in Table 16 and 17.

It is considered that the considerable percentage of radioactivity depends upon Iodine-132 and Iodine-133.

Figure 17. Milk Sampling Locations



By M. Saiki, G. Tanaka, Y. Ohmomo, K. Nakamura, H. Kawamura,

H. Yamaguchi, *H. Danbara and T. Mitsuhashi

(National Institute of Radiological Sciences, *National Institute of Animal Industry)

	Date of Sampling	Date of Determination	Farm	Radioactive Iodine (pCi/l)	
				Milk collecting center	Market
30 De 31 1 Jai 2 3 4 5 6 7 9 10 11 12 13 16 18 21 23	c., 1966 " 1967 " " " " " " " " " " " " " " " " " " "	31 Dec., 1966 " 1 Jan., 1967 2 " 3 " 4 " 5 " 6 " 7 " 9 " 10 " 11 " 12 " 13 " 16 " 18 " 23 " 24 "	27 225 275 68 20 17 10 6 23	$\begin{array}{c} 33\\167\\26\\164\\69\\70\\80\\58\end{array}$	25* 63** 26* 21* 29** 7* 29** 10*** 3***
20	"	28 11		4	2***

Note ; * Milk purchased from Chiba city

** Milk purchased from Kashiwa city, Chiba

*** Milk purchased from Tokyo

Date of	Date of	Radioactive Iodine	Sample from
Sampling	Determination	(pCi/l)	
1 Jan., 1967	2 Jan., 1967	0	Farm in Sapporo
"	"	214	"Kumam
5 Jan., 1967	6 Jan., 1967	0	<ul><li><i>n</i> Sapporo</li><li><i>n</i> Kumam</li></ul>
"	"	73	
9 Jan., 1967	10 Jan., 1967	68	" Sapporo

 Table 17. Radioactive Iodine in Milk from Kumamoto and Sapporo in Japan --1, 5and 9 Jan., 1967- By M. Saiki, Y. Ohmomo, K. Nakamura, H. Yamaguchi *H. Danbara and T. Mitsuhashi (National Institute of Radiological Sciences, *National Institute of Animal Industry)